Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Eutrophication: causes, consequences and control  
Eutrophication: causes, consequences and control
von: Abid A. Ansari, Singh Gill Sarvajeet, Guy R. Lanza, Walter Rast
Springer-Verlag, 2010
ISBN: 9789048196258
402 Seiten, Download: 15324 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Foreword 5  
  Preface 7  
  Contents 9  
  Contributors 11  
  1 Eutrophication and Climate Change: Present Situation and Future Scenarios 14  
     1.1 Preamble 14  
     1.2 The Wax and Wane of Lake and River Eutrophication 15  
     1.3 Evidence of Climate Change -- Does It Matter? 19  
     1.4 What Do We Know About Climate Impacts on Inland Waters? 20  
     1.5 Consequences of Climate Change for Inland Waters -- Future Scenarios 22  
     1.6 Concerns, Adaptation and Mitigation 25  
     1.7 Epilogue 26  
     References 26  
  2 Controlling Eutrophication in the Baltic Sea and the Kattegat 30  
     2.1 Background and Aim of the Work 30  
     2.2 Basic Information 33  
        2.2.1 Morphometric Data and Criteria for the Vertical Layers 35  
        2.2.2 Sediments and Bottom Dynamic Conditions 42  
        2.2.3 Trends and Variations in Water Variables 43  
        2.2.4 The Dilemma Related to Predictions of Cyanobacteria 47  
        2.2.5 The Reasons Why This Modeling Is Not Based on Dissolved Nitrogen or Phosphorus 48  
        2.2.6 The Reasons Why It Is Generally Difficult to Model Nitrogen 50  
        2.2.7 Comments and Conclusions 50  
     2.3 Water, SPM, Nutrient, and Bioindicator Modeling 51  
        2.3.1 Background on Mass Balances for Salt and the Role of Salinity 51  
        2.3.2 Water Fluxes 54  
        2.3.3 Mass Balances 56  
           2.3.3.1 Phosphorus Dynamics 56  
        2.3.4 SPM Dynamics 59  
        2.3.5 Nitrogen Fluxes 62  
        2.3.6 Predicting Chlorophyll-a Concentrations 64  
        2.3.7 Predicting Water Clarity and Secchi Depth 66  
        2.3.8 Conclusions 67  
     2.4 Management Scenarios 68  
        2.4.1 Reductions in Tributary Phosphorus Loading to the Baltic Sea 69  
        2.4.2 Reductions in Tributary Phosphorus Loading to the Kattegat from Sweden 71  
        2.4.3 Reductions in Tributary Nitrogen Loading to the Kattegat from Sweden 71  
        2.4.4 An ''Optimal'' Management to Reduce the Eutrophication in the Kattegat 71  
        2.4.5 Effective and Cost-Effective Nutrient Reductions 73  
        2.4.6 Comments and Conclusions 75  
     2.5 Summary and Recommendations 76  
     References 78  
  3 Eutrophication Processes in Arid Climates 81  
     3.1 Introduction 81  
        3.1.1 Eutrophication Process 81  
           3.1.1.1 Natural Eutrophication 82  
           3.1.1.2 Eutrophication by Human Activities 82  
        3.1.2 Eutrophication Classification 82  
           3.1.2.1 Oligotrophic 82  
           3.1.2.2 Mesotrophic 82  
           3.1.2.3 Eutrophic 82  
           3.1.2.4 Dystrophic 82  
        3.1.3 Causes of Eutrophication and Supporting Factors 82  
           3.1.3.1 Nutrients 83  
           3.1.3.2 Availability of Nutrients 83  
           3.1.3.3 Factors Supporting the Development of Eutrophication 84  
           3.1.3.4 Sources of Nutrients 84  
        3.1.4 Effects of Eutrophication 84  
        3.1.5 Trihalomethanes 86  
           3.1.5.1 Disinfection 86  
           3.1.5.2 Natural Organic Matter (NOM) 87  
           3.1.5.3 Trihalomethanes 87  
           3.1.5.4 THM Formation Potential 88  
        3.1.6 Control of Disinfection By-product 88  
           3.1.6.1 Organic Precursor Removal 88  
        3.1.7 King Abdullah Canal (KAC): A Case Study 91  
           3.1.7.1 Introduction 91  
           3.1.7.2 The Study Area 92  
           3.1.7.3 Results 93  
        3.1.8 Conclusions 101  
     References 101  
  4 Eutrophication and Restoration of Shallow Lakes from a Cold Temperate to a Warm Mediterranean and a (Sub)Tropical Climate 103  
     4.1 Shallow Lakes 103  
     4.2 North Temperate "Cold Shallow Lakes" 104  
        4.2.1 Alternative Stable States 104  
        4.2.2 Role of Vegetation 106  
        4.2.3 Eutrophication 107  
     4.3 Shallow Lakes in Different Climatic Regions 107  
        4.3.1 Functioning and Eutrophication of Mediterranean Shallow Lakes 108  
        4.3.2 Functioning and Eutrophication of Subtropical and Tropical shallow Lakes 110  
        4.3.3 Role of Vegetation in Mediterranean and (Sub)Tropical Shallow Lakes 112  
     4.4 Restoration of Eutrophicated Cold and Warm Shallow Lakes 112  
        4.4.1 Biological Methods 113  
           4.4.1.1 Fish Manipulation 113  
           4.4.1.2 Protection of Submerged Plants and Transplantation 115  
           4.4.1.3 Combating Nuisance Plant Growth 115  
        4.4.2 Physico-Chemical Methods 115  
     4.5 Climate Change Gives Future Challenges 116  
     References 117  
  5 Trophic State and Water Quality in the Danube Floodplain Lake (Kopacki Rit Nature Park, Croatia) in Relation to Hydrological Connectivity 121  
     5.1 Introduction 121  
     5.2 Study Area 122  
     5.3 Sediment Biota (Research Review 1997--2002) 122  
     5.4 Hydrological Regime (2002--2005) 124  
     5.5 Water Quality Parameters 127  
        5.5.1 Phytoplankton Chlorophyll 128  
        5.5.2 Bacterial Abundance 128  
     5.6 Primary Productivity 129  
     5.7 Trophic State in Relation to Hydrological Connectivity 129  
     5.8 Nutrient Enrichment Bioassay 131  
     5.9 Weed-Bed Invertebrates Characterize Trophic State 134  
     5.10 Occurrence of Invasive Invertebrates 136  
     5.11 Conclusion Remarks and the Basis for Future Research 137  
     References 138  
  6 Mediterranean Climate and Eutrophication of Reservoirs: Limnological Skills to Improve Management 142  
     6.1 Introduction 142  
     6.2 Effects of the Mediterranean Climate and Insularity on Eutrophication Patterns in Sicily 144  
        6.2.1 Top-Down Effects Caused by Water-Level Fluctuations 144  
        6.2.2 Bottom-Up Effects Caused by Water-Level Fluctuations 145  
     6.3 Phosphorus Loadings in Sicilian Reservoirs 148  
     6.4 Consequences of Eutrophication on Public Health 148  
     6.5 Eco-friendly Procedures to Control Eutrophication and Their Effectiveness 150  
     6.6 Conclusion 151  
     References 151  
  7 Eutrophication: Threat to Aquatic Ecosystems 154  
     7.1 Water 154  
     7.2 Eutrophication 155  
     7.3 Eutrophication: A Global Scenario 156  
     7.4 Nutrients in Aquatic Ecosystems 159  
     7.5 Eutrophication and Aquatic Environment 161  
     7.6 Eutrophication and Aquatic Biodiversity 163  
     7.7 Eutrophication in Wetland Ecosystems 167  
     7.8 Biological Monitoring and Impact Assessment 169  
     7.9 Biological Restoration of Eutrophic Waters 173  
     7.10 Engineered and Technological Correctives 174  
     References 176  
  8 Eutrophication Problem in Egypt 182  
     8.1 Introduction 182  
     8.2 Abu Qir Bay 185  
     8.3 Eastern Harbour 189  
     8.4 Western Harbour 193  
     8.5 Dekhaila Harbour 196  
     8.6 Mex Bay 199  
     8.7 Conclusions 201  
     References 201  
  9 Freshwater Wetland Eutrophication 206  
     9.1 Introduction 206  
     9.2 The Wetland Hydroperiod and Nutrient Transformations 207  
        9.2.1 Biogeochemical Transformations in Wetlands Under Anaerobic Conditions 208  
        9.2.2 Nitrogen and Phosphorus Cycling in Wetlands 209  
     9.3 Main Nutrient Sources to Wetlands: External Load vs. Internal Load 211  
     9.4 Biogeochemical Responses of Wetlands to Nutrient Enrichment 212  
     9.5 The Biological Effects of Wetland Eutrophication: Community Structure, Alternative Stable States, and Trophic Cascades 214  
     9.6 Biomanipulation of Wetlands as a Tool for Eutrophication Mitigation 215  
     9.7 Conclusion 218  
     References 218  
  10 Effects of Contamination by Heavy Metals and Eutrophication on Zooplankton, and Their Possible Effects on the Trophic Webs of Freshwater Aquatic Ecosystems 222  
     10.1 Introduction 222  
     10.2 Methodology 223  
     10.3 Results 225  
        10.3.1 Environmental Context 225  
        10.3.2 Zooplankton Structure 228  
           10.3.2.1 Abundance 228  
           10.3.2.2 Biomass 229  
           10.3.2.3 Species Richness and Species Diversity 229  
     10.4 Discussion 230  
        10.4.1 Integrating Possible Effects of Eutrophication and Heavy Metal Contamination on the Trophic Webs of Freshwater Ecosystems 231  
     10.5 Summary 233  
     References 233  
  11 Impact of Eutrophication on the Seagrass Assemblages of the Mondego Estuary (Portugal) 235  
     11.1 Introduction 235  
     11.2 Case Study: The Mondego Estuary 236  
        11.2.1 Anthropogenic Pressures 237  
        11.2.2 Eutrophication in the South Arm 237  
        11.2.3 Management Measures to Control Eutrophication 237  
     11.3 Materials and Methods 237  
        11.3.1 Sampling Programme and Laboratory Procedures 237  
        11.3.2 Macrobenthic Feeding Guild Assignments 238  
        11.3.3 Secondary Production 238  
     11.4 Results 238  
        11.4.1 Climate 238  
        11.4.2 Nutrient Dynamics 239  
        11.4.3 Primary Producers 239  
        11.4.4 Macrofauna Community General Trends 240  
           11.4.4.1 Changes in Diversity 240  
           11.4.4.2 Changes in Density, Biomass and Production 241  
           11.4.4.3 Feeding Guilds Relative Composition 243  
        11.4.5 Species-Specific Responses 245  
           11.4.5.1 Hydrobia ulvae (Gastropoda) 245  
           11.4.5.2 Cyathura carinata (Isopoda) 245  
           11.4.5.3 Scrobicularia plana (Bivalvia) 246  
           11.4.5.4 Hediste diversicolor (Polychaeta) 247  
           11.4.5.5 Alkmaria romijni and Capitella capitata (Polychaeta) 247  
     11.5 Discussion 248  
        11.5.1 Eutrophication Effects 248  
           11.5.1.1 Macroalgal Bloom Dynamics in the Eutrophic Area 250  
        11.5.2 Differences Between Sites 253  
        11.5.3 Pre-mitigation versus Post-mitigation Periods 253  
        11.5.4 Evaluation of the Ecosystem Recovery 254  
     References 255  
  12 Aquatic Plant Diversity in Eutrophic Ecosystems 257  
     12.1 Introduction 257  
     12.2 Plant Diversity: Eutrophic Ecosystems 259  
        12.2.1 Phytoplankton Diversity 260  
        12.2.2 Macrophyte Diversity 260  
        12.2.3 Wetland Diversity 261  
     12.3 Plant Diversity: Nutrient Limitations 262  
     12.4 Plant Diversity: Environmental Factors 262  
     12.5 Plant Diversity: Succession Pathways 263  
     12.6 Plant Diversity: Assessment and Monitoring 264  
     12.7 Plant Diversity: Indicator of Eutrophication 264  
     12.8 Plant Diversity: Measurements 265  
        12.8.1 Frequency 265  
        12.8.2 Density 265  
        12.8.3 Abundance 266  
        12.8.4 Diversity Indices 266  
     12.9 Discussion 267  
     References 269  
  13 Linking Anthropogenic Activities and Eutrophication in Estuaries: The Need of Reliable Indicators 274  
     13.1 Introduction 274  
        13.1.1 Estuaries and Salt Marshes 275  
        13.1.2 Nutrient Loading and Plant Responses 276  
        13.1.3 The Selection of Indicators 276  
        13.1.4 Scope and Goals 277  
     13.2 General Approach 278  
        13.2.1 Study Areas 278  
        13.2.2 Eutrophication Status: Comparison Between Estuaries 279  
        13.2.3 Historical Nutrient History 280  
     13.3 Results and Discussion 281  
        13.3.1 Eutrophication Status: Comparison Between Estuaries 281  
           13.3.1.1 Nitrogen and Carbon Concentrations 281  
           13.3.1.2 Plant Aboveground Biomass 283  
           13.3.1.3 Nitrogen Stable Isotopes 285  
        13.3.2 Historical Nutrient History 285  
     13.4 Concluding Remarks 288  
     References 288  
  14 Successful Restoration of a Shallow Lake: A Case Study Based on Bistable Theory 294  
     14.1 Defining the Problem 294  
     14.2 The Theory of Stable States -- Reloaded 295  
     14.3 The Study Site 296  
        14.3.1 What Happened? Causes of Change 296  
        14.3.2 How to Restore? The Concept of Remediation 298  
     14.4 Conclusions from a Successful Story 301  
     References 302  
  15 Biomanipulation in Lake 0rungen, Norway: A Tool for Biological Control 304  
     15.1 Introduction 305  
        15.1.1 Why Lake Biomanipulation? 305  
        15.1.2 Increased Piscivory: A Target of Biomanipulation 306  
        15.1.3 Prey Fish Behavior: A Role of Piscivory 307  
        15.1.4 Effects of Biomanipulation on Pollutants 307  
           15.1.4.1 Mercury 307  
           15.1.4.2 Persistent Organic Pollutants (POPs) 307  
        15.1.5 Aims and Objectives 308  
        15.1.6 Study Area 308  
     15.2 Materials and Methods 310  
        15.2.1 Exploitation of Large Pike and Its Population Recruitment 310  
        15.2.2 Relative Abundance and Habitat Use of Perch and Roach 311  
        15.2.3 Diet Analysis 312  
        15.2.4 Food Web Analysis Using Stable Isotopes of Nitrogen and Carbon 312  
        15.2.5 Total Mercury Concentrations and Its Transfer Patterns 312  
        15.2.6 Persistent Organic Pollutants (POPs) 313  
     15.3 Results 313  
        15.3.1 Recruitment of Pike After Population Manipulation 313  
        15.3.2 Relative Abundance and Habitat Use 313  
        15.3.3 Diets and Food Web Structure 315  
        15.3.4 Hg Concentrations and Biomagnification 315  
        15.3.5 Organochlorine Compounds and Their Biomagnification 317  
     15.4 Discussion 318  
     15.5 Main Conclusions 325  
     References 327  
  16 Reasons and Control of Eutrophication in New Reservoirs 333  
     16.1 Introduction 333  
     16.2 Reasons of Eutrophication Occurring in New Built Reservoirs 334  
        16.2.1 Natural Factors and the Hydrodynamic Conditions 335  
        16.2.2 The Nutrient Concentrations in Reservoirs 336  
        16.2.3 The Structure of the Ecosystem in Reservoir 337  
     16.3 Water Quality Variation and Eutrophication in New Reservoirs (Take the Three Gorges Reservoir and Laohutan Reservoir as an Illustration) 338  
        16.3.1 The Three Gorges Reservoir 338  
           16.3.1.1 Changes of Hydrodynamic Character After the Water Storage in the Three Gorges Reservoir 338  
           16.3.1.2 The Change of Water Quality in Three Gorges Reservoir Before and After Impounding 338  
           16.3.1.3 The Dynamic Variation of the Aquatic Community 339  
        16.3.2 The Laohutan Reservoir 340  
           16.3.2.1 Assessment of Inflow Water Quality and Soil Before Water Storage 340  
           16.3.2.2 Water Quality Variation and Eutrophication Mechanism of Laohutan Reservoir 340  
           16.3.2.3 Result and Discussion 344  
        16.3.3 Comparison of the Similar Reservoirs 344  
           16.3.3.1 Comparison of the New Reservoir with an Old One 344  
           16.3.3.2 Comparison of Two New Reservoirs 345  
     16.4 Control Methods of Eutrophication 345  
        16.4.1 Reducing the Importing Nutrients 345  
           16.4.1.1 Industrial Pollution Control 345  
           16.4.1.2 Agricultural Pollution Control 345  
           16.4.1.3 Domestic Pollution Control 346  
        16.4.2 Endogenous Nutrients Control 346  
           16.4.2.1 Biological Measures 346  
           16.4.2.2 Engineering Measures 346  
        16.4.3 Construction of a Stable Ecosystem 346  
        16.4.4 Ecological Scheduling of Reservoir 347  
        16.4.5 Water Quality Monitoring 347  
     References 347  
  17 Plant Nutrient Phytoremediation Using Duckweed 349  
     17.1 Introduction and Background of Duckweed 349  
     17.2 Duckweed for Phytoremediation of Contaminated Waters 351  
        17.2.1 As an Alternative Means of Wastewater Treatment 351  
        17.2.2 As a Means of Removing Heavy Metals and Other Toxic Elements in Waters 353  
        17.2.3 As a Means of Removing Toxic Organic Compounds from Wastewater 354  
     17.3 Duckweeds Other Practical Application 354  
        17.3.1 As a Source of Livestock Feed 354  
        17.3.2 As an Inexpensive and Accurate Way of Toxicity Testing 356  
        17.3.3 Miscellaneous Uses 356  
     17.4 Summary 357  
     References 358  
  18 Nitrogen Removal from Eutrophicated Water by Aquatic Plants 363  
     18.1 Introduction 363  
     18.2 Sources of N in Natural Aquatic Ecosystems 364  
     18.3 N Uptake by Aquatic Plants 365  
        18.3.1 NO3-- Uptake 365  
        18.3.2 NH4+ Uptake 365  
        18.3.3 NHx Toxicity 367  
        18.3.4 Aquatic Plants Preferences in Taking up NO3-- or NH4+ 368  
        18.3.5 Root Versus Shoot N Uptake 369  
     18.4 Aquatic Plants and N Removal Efficiency in Eutrophic Aquatic Ecosystems 370  
        18.4.1 Contribution of Aquatic Plants to N Removal 370  
           18.4.1.1 Temperature Effect 370  
           18.4.1.2 Light Effect 373  
           18.4.1.3 Seasonality 373  
           18.4.1.4 N Loading 373  
           18.4.1.5 pH Effect 373  
           18.4.1.6 Hydraulic and Organic Loading and Retention Time 374  
           18.4.1.7 Best/Worst Performers Among Plant Species 374  
           18.4.1.8 Effect of Other Nutrient on Capacity of Aquatic Plants to Remove N 375  
        18.4.2 Aquatic Plants Improvement of the Eutrophic Aquatic Ecosystems 375  
     18.5 Conclusions 376  
     References 376  
  19 Accelerated Eutrophication in the Mekong River Watershed: Hydropower Development, Climate Change, and Waterborne Disease 381  
     19.1 Introduction: A Brief History of Dam Building in Southeast Asia 381  
        19.1.1 The Nexus of Hydropower Development, Climate Change, Accelerated Eutrophication, and waterborne disease 382  
     19.2 Mekong River Habitat Ecology -- Benchmark Studies of Pre-impoundment Conditions 383  
        19.2.1 Study Areas 383  
           19.2.1.1 Threats to Biological Water Quality -- Cyanotoxins and Schistosomiasis 385  
        19.2.2 Hydropower Projects, Accelerated Eutrophication, Water Quality, and Waterborne Disease Transmission 385  
           19.2.2.1 General Habitat Dynamics 385  
     19.3 Using the Benchmark Studies to Predict Accelerated Eutrophication Impacts from Dam Impoundments 391  
     19.4 Summary 393  
     References 393  
  Index 395  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz