Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Sphingolipids as Signaling and Regulatory Molecules  
Sphingolipids as Signaling and Regulatory Molecules
von: Charles Chalfant, Maurizio Del Poeta
Springer-Verlag, 2011
ISBN: 9781441967411
287 Seiten, Download: 8183 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Copyright Page 5  
  DEDICATION 6  
  PREFACE 7  
  ABOUT THE EDITORS... 8  
  ABOUT THE EDITORS... 9  
  PARTICIPANTS 10  
  Table of Contents 15  
  ACKNOWLEDGEMENTS 21  
  Chapter 1 An Overview of SphingolipidMetabolism:From Synthesis to Breakdown 22  
     Sphingolipid Properties in Membranes 23  
     De Novo Synthesis in the ER 24  
        Serine Palmitoyltransferase and 3-Ketodihydrosphingosine Reductase 25  
        Dihydroceramide Synthases/Ceramide Synthases and Dihydroceramide Desaturase 26  
     Ceramide Transport from the ER to the Golgi 27  
     Synthesis of Complex Sphingolipids 28  
        Ceramide Galactosyltransferase and Galactosphingolipids 28  
        Glucosylceramide Synthase and Derivatives of Glucosylceramide 29  
        Sphingomyelin Synthesis 29  
     Ceramide Kinase and Ceramide-1-Phosphate 30  
     Catabolizing Complex Sphingolipids and Sphingomyelins into Ceramide 31  
     The Catabolism of Ceramides and the Final Common Breakdown Pathway 33  
        Acid, Neutral and Alkaline Ceramidases 33  
        Sphingosine-1-Phosphate and Sphingosine Kinases 1 and 2 35  
        Lipid Phosphate Phosphatases, S1P Phosphatases and the Salvage Pathway 36  
        S1P Lyase in the Removal of Sphingoid Bases 37  
     Conclusion 38  
     References 38  
  Chapter 2 Sphingolipid Transport 45  
     Introduction 45  
     Intramembrane Sphingolipid Movements 46  
        Lateral Diffusion and Lateral Phase Separation of Sphingolipids 46  
        Sphingolipid Raft Dynamics 47  
           Transbilayer Transport 48  
        Transbilayer Transfer of Sphingomyelin and Complex Glycosphingolipids 49  
        Transbilayer Transfer of Monohexosylsphingolipids 52  
        Transbilayer Transfer of Ceramide and Sphingoid Bases 52  
        Transbilayer Transfer of Sphingosine-1-Phosphate 53  
     Intermembrane Sphingolipid Transport 53  
        Protein-Mediated Sphingolipid Transport 54  
           CERT-Mediated Transport of Ceramides 54  
           FAPP2-Mediated Transport of Glucosylceramide 57  
           Glycolipid Transfer Proteins 57  
        Membrane Contacts 58  
        Sphingolipid Vesicular Transport 58  
           Biosynthetic Vesicular Pathway 58  
           Endocytic Pathway 59  
     Conclusion 60  
     References 61  
  Chapter 3 Sphingolipid Analysisby High Performance LiquidChromatography-Tandem MassSpectrometry (HPLC-MS/MS) 67  
     Introduction 67  
     Sphingolipids: Structure and Composition 68  
     LC-MS Methods for Detection and Analysis of Bioactive Sphingolipids 70  
     Lipidomic Approach 70  
     Sample Preparation 70  
     Analysis of Intact Sphingolipids by Mass Spectrometry 71  
     Mechanism of Electrospray Ionization Mass Spectrometry (ESI/MS) 72  
     MS Scan Modes 72  
     Specific Scan Modes for MS/MS Instrumentation 73  
        Product Ion Scan 73  
        Neutral Loss (NL) 73  
        Precursor Ion Scan (PI) 73  
        Multiple Reaction Monitoring (MRM) 73  
     Sphingolipid Identification 73  
     HPLC-MS/MS Methodology 74  
     Quantitation 75  
     Selection of Internal Standards (ISs) 76  
     Quantitative Calibration 76  
     Data Handling 76  
     Alternative Methodology 77  
     Conclusion 77  
     References 77  
  Chapter 4 Ceramide Synthases:Roles in Cell Physiology and Signaling 81  
     Introduction 81  
     Fatty Acid Specificity, Kinetics and Tissue Distribution 83  
     Inhibitors 84  
        Fumonisins 84  
        Australifungin 85  
        FTY720 85  
     Posttranslational Modifications 85  
     Membrane Topology 85  
     Why Are There So Many Mammalian CerS? 87  
     Roles of CerS in Signal Transduction and Disease 88  
     Conclusion 89  
     References 89  
  Chapter 5 Tales and Mysteries of the EnigmaticSphingomyelin Synthase Family 93  
     Sphingomyelin Biosynthesis: An Historical Perspective 93  
        Initial Milestones 93  
        Localization of SM Synthase Activity in Cells 94  
        Discovery of a Ceramide Transfer Protein with a Key Role in SM Biosynthesis 96  
        Alternative Pathways of SM Biosynthesis and Analogous Reactions 96  
        Physicochemical Properties of SM 97  
     The Multigenic Sphingomyelin Synthase (SMS) Family 97  
        SMS Cloning Strategies 97  
        Structural Organization and Reaction Chemistry of SMS Family Members 98  
        SMS Family Members Display Striking Variations in Substrate Specificity 99  
        Differential Expression of SMS1 and SMS2 100  
     Cellular Functions of SMS Family Members 100  
        SMS1 and SMS2 as Regulators of SM Homeostasis and Receptor-Mediated Signaling 100  
        SMS1 and SMS2 as Regulators of Lipid-Based Signaling 101  
     Conclusion 102  
     References 103  
  Chapter 6 Ceramide in Stress Response 107  
     Introduction 107  
     Chemical Structure and Biophysical Properties of Ceramide 108  
     Changes in Ceramide Mass during Stress 108  
     Mechanisms for Ceramide Generation during Stress 112  
        Role of the De Novo Pathway for Ceramide Generation in Cellular Stress Response 112  
           Heat Stress 113  
           Septic Shock 113  
           Lipotoxicity and Insulin Desensitization 114  
           Programmed Cell Death 114  
           Autophagy 115  
           Mechanisms of Activation of De Novo Synthesis of Ceramide during Stress 115  
        Role of the Sphingomyelinases in Cellular Stress Response 115  
           Neutral Sphingomyelinase 116  
              Hepatic Acute Phase Response 116  
              Vascular Inflammation 116  
              Apoptosis 116  
              Growth Arrest 116  
              Aging and Cancer 117  
              Mechanisms of Activation of NSMase 117  
           Acid Sphingomyelinase 118  
              Endotoxic Shock 118  
              Apoptosis (reviewed in ref. 162) 118  
              Viral and Bacterial Infections 118  
              Mechanisms of Activation of ASMase 118  
        Evidence for a Coordinated Regulation of Multiple Pathways for Ceramide Generation 118  
     Mechanisms of Ceramide Effects on Cellular Functions 119  
        Ceramide-Interacting Molecules 119  
           PKC (reviewed in ref. 114) 119  
           PP2A (reviewed in ref. 181) 119  
           Cathepsin D 119  
        Indirect Targets of Ceramide 120  
           Modulators of Apoptosis (reviewed in ref. 184) 120  
           Regulators of Cell Cycle 120  
           Regulators of Inflammation 120  
        Ceramide Effects on Membrane Organization 121  
     Conclusion 121  
     References 122  
  Chapter 7 Animal Models for Studyingthe Pathophysiology of Ceramide 130  
     Introduction 130  
     Sphingosine Kinase 1/2 130  
     Ceramidases 131  
        Acid Ceramidase 131  
        Neutral Ceramidase 132  
     Sphingomyelinases (SMase) and Sphingomyelin Synthases (SMS) 132  
        Acid Sphingomyelinase (ASMase) 132  
           Neutral Sphingomyelinase (nSMase) 1/2 133  
           Sphingomyelin Synthases (SMS) 133  
     S1P Lyase 133  
     The Other GEM for Sphingolipid-Related Enzymes 134  
     Conclusion 134  
     References 135  
  Chapter 8 Ceramide-1-Phosphate in Cell Survivaland Inflammatory Signaling 139  
     Introduction 139  
     Ceramide-1-Phosphate Synthesis and Degradation 140  
     Ceramide-1-Phosphate: A Key Regulator of Cell Growth and Survival 142  
     Ceramide-1-Phosphate and the Control of Inflammatory Responses 144  
     Ceramide-1-Phosphate Mediates Macrophage Migration 145  
     Conclusion 146  
     References 147  
  Chapter 9 Ceramide-1-Phosphate in Phagocytosisand Calcium Homeostasis 152  
     Ceramide-1-Phosphate in Phagocytosis 152  
     Ceramide-1-Phosphate as a Regulator of Calcium Homeostasis 155  
     Conclusion 158  
     References 159  
  Chapter 10 Extracellular and Intracellular Actionsof Sphingosine-1-Phosphate 162  
     Introduction 162  
     Sphingolipid Metabolism 162  
     Sphingosine Kinases 163  
        SphK1 164  
        SphK2 164  
        SphK1 vs. SphK2 164  
        S1P Receptors 166  
        S1P1 166  
        S1P2 167  
        S1P3 167  
        S1P4 and S1P5 167  
     Evidence for Intracellular Targets of S1P 168  
        S1P in Saccharomyces cerevisiae 168  
        S1P in Arabidopsis thaliana 168  
        S1P in Mammalian Cells 169  
     Implications, Future Directions, and Conclusion 171  
     References 171  
  Chapter 11 Glucosylceramide in Humans 177  
     Introduction 177  
     Glucosylceramide Synthesis and Degradation 177  
     Multiple Functions of Glucosylceramide 179  
        Template for Higher Order Glycosphingolipids 179  
        Membrane and Lipid Raft Constituent 179  
        Cellular Protection in the Skin 180  
        Cellular Protection in the Cardiovasculature 180  
        Cellular Protection in the Brain 181  
        Cellular Protection in the Immune System 181  
        Cellular Protection in Carcinomas 182  
     Conclusion 182  
     References 183  
  Chapter 12 Gangliosides as Regulators of CellMembrane Organization and Functions 186  
     Introduction 186  
     Segregation of Membrane Lipids and Detergent-Resistant Membrane Domains 190  
     Lipid Membrane Domain Functions 192  
        Gangliosides and Lipid Membrane Domains in the Nervous System 192  
        The Glycosynapse 193  
        GM3 and EGF Receptor 194  
        GM3, Caveolae and the Regulation of Insulin Receptor and PDGF Receptor 195  
     The Regulation of Glycosphingolipid Composition of the Plasma Membranes 195  
     Conclusion 197  
     References 197  
  Chapter 13 Cancer Treatment Strategies TargetingSphingolipid Metabolism 206  
     Introduction 206  
     Sphingolipid Metabolism 207  
     Ceramide Generated via Different Biochemical Routes Can Induce Apoptosis 208  
     Ceramide as a Mediator of Cell Death by Chemopreventive Agents 209  
     Ceramide Influences Both the Intrinsic and Extrinsic Apoptotic Pathways 209  
     Sphingosine-1-Phosphate as a Counterbalance to Ceramide 210  
     Inhibitory Effects of S1P on Apoptotic Pathways 211  
     Sphingolipids Regulate Key Signaling Pathways That Control Cell Fate 211  
     Sphingolipids and Autophagy 213  
     Other Signaling Pathways Influenced by Sphingolipids 214  
     Ceramide Regulates Cell Cycle Progression 214  
     Ceramide and Telomerases 215  
     Ceramide and S1P in Cancer Stem Cells 215  
     Effects of S1P on Migration and Metastasis 215  
     Cancer Cells Exhibit Molecular and Genetic Changes in Sphingolipid Metabolism 215  
     Targeting Sphingolipids for Cancer Therapy 217  
     S1P Signaling to Protect Normal Tissues from Therapy-Related Cytotoxicity 219  
     Conclusion 219  
     References 219  
  Chapter 14 Therapeutic Strategies for Diabetesand Complications:A Role for Sphingolipids? 227  
     Diabetes and Insulin Resistance 227  
     Insulin Resistance and Altered Sphingolipid Metabolism 228  
     Diabetic Pancreatic Dysfunction and Sphingolipids 230  
     Diabetic Cardiovascular Dysfunction and Sphingolipids 230  
     Diabetic Nephropathy and Sphingolipids 231  
     Diabetic Retinopathy and Sphingolipids 231  
     Therapeutics That Target Sphingolipid Metabolism or Sphingolipid Signaling in Diabetes 232  
     Conclusion 233  
     References 234  
  Chapter 15 Roles for Sphingolipidsin Saccharomyces cerevisiae 238  
     Introduction 238  
     Sphingolipid Metabolism in S. cerevisiae 238  
     Membrane-Associated Functions and Processes 240  
     Signal Transduction Pathways That Require Sphingolipids 243  
     Longevity and Cellular Aging 245  
     Regulation of Sphingolipid Biosynthesis 246  
     Conclusion and Future Developments 247  
     References 248  
  Chapter 16 Sphingolipid Signaling in FungalPathogens 253  
     Sphingolipid Synthesis 253  
     Cryptococcus Neofomans: Model of Sphingolipid Signaling in Fungi 254  
     Sphingolipid Signaling in Other Pathogenic Fungi 256  
     Conclusion 256  
     References 257  
  Chapter 17 Sphingolipids in Parasitic Protozoa 259  
     Introduction 259  
        Leishmania 259  
        SL Pathway Genetics 261  
        SL Salvage by Amastigotes 261  
        Inhibition of SL Synthetic Pathways 262  
        Trypanosoma brucei (ssp) and Trypanosoma cruzi 262  
        Trypanosoma brucei 262  
        Trypanosoma cruzi 263  
     Trypanosomatid Sphingolipid Synthases 264  
        Plasmodium falciparum 265  
        Toxoplasma gondii 265  
        Trichomonas vaginalis and Giardia lamblia 266  
     Conclusion 266  
     References 267  
  Chapter 18 Biosynthesis of Sphingolipids in Plants(and Some of Their Functions) 270  
     Introduction 270  
     Pathway of Plant Sphingolipid Biosynthesis 271  
     Functional Characterization of Genes and Enzymes Involved in Plant Sphingolipid Biosynthesis (2004-2008) 276  
        Serine Palmitoyltransferases 276  
        Long-Chain Base C4-Hydroxylases 277  
        Ceramidase 277  
        Fatty Acyl a-Hydroxylase 277  
        Sphingolipid- 4(E)-Desaturase 278  
        Sphingolipid- 8(E/Z)-Desaturases 278  
        Inositolphosphorylceramide Synthase (IPCS) 278  
        Long-Chain Base Kinase and Long-Chain Base Phosphate Phosphatase 279  
        Long-Chain Base Phosphate Lyase 281  
     Conclusion 281  
     References 282  
  Chapter 19 Computational Analysis of SphingolipidPathway Systems 285  
     Introduction 285  
     Sphingolipid Models and Their Potential Uses 289  
     Conclusion 294  
     References 295  
  Appendix Introduction to Tools and Techniquesfor Ceramide-Centered Research 297  
     Lipid Extraction 297  
     Identification and Quantification of Steady State Levels of Ceramide 297  
     Analysis of Ceramide Metabolism 299  
     The Use of Ceramide Analogues 300  
        Short-Chain Ceramides 300  
        Fluorescent Ceramide Analogues 300  
     Pharmacological Tools 300  
     Genetic Tools 300  
        RNA Interference 300  
        Knockout Mice 300  
     Conclusion 303  
     References 303  
  Index 307  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz