Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Cell Mechanics
  Großes Bild
 
Cell Mechanics
von: Yu-Li Wang, Dennis E. Discher (Eds.)
Elsevier Textbooks, 2007
ISBN: 9780080548708
632 Seiten, Download: 19975 KB
 
Format: EPUB, PDF
geeignet für: geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Apple iPod touch, iPhone und Android Smartphones Online-Lesen PC, MAC, Laptop

Typ: A (einfacher Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Front Cover 1  
  Methods in Cell Biology 4  
  Copyright Page 5  
  Contents 6  
  Contributors 14  
  Preface 20  
  Part I: Basic Concept and Preparation Culture Substrates for Cell Mechanical Studies 22  
     Chapter 1: Basic Rheology for Biologists 24  
        I. Introduction and Rationale 25  
        II. Rheological Concepts 27  
           A. Elasticity 28  
           B. Viscosity 29  
           C. Oscillatory Measurements 30  
        III. Rheological Instrumentation 32  
        IV. Experimental Design 34  
           A. Stress-Strain Relation 34  
           B. Stress Relaxation 35  
           C. Creep and Creep Recovery 36  
           D. Frequency Sweep 37  
           E. Time Sweep 38  
           F. Strain or Stress Amplitude Sweeps 39  
           G. Rate-Dependent Viscosity 40  
           H. Flow Oscillation 41  
        V. Sample Preparation 41  
           A. Solids 41  
           B. Liquids and Gelling Systems 43  
        VI. Special Considerations for Biological Samples 43  
           A. Biological Polymers 43  
           B. Intact Tissue 44  
           C. Instrument Selection for Measuring Gelation Kinetics 44  
        VII. Conclusions 45  
        Glossary 46  
        References 47  
     Chapter 2: Polyacrylamide Hydrogels for Cell Mechanics: Steps Toward Optimization and Alternative Uses 50  
        I. Introduction 51  
        II. Principle of the Polyacrylamide Hydrogel 52  
           A. Standard Method of Polymerization 52  
           B. Light-Induced Initiation of Polymerization 52  
        III. Conjugation of Proteins to Polyacrylamide 54  
           A. Carbodiimide-Mediated Cross-Linking 55  
           B. Activation with Acrylic Acid N-Hydroxysuccinimide Ester 57  
           C. Activation with the N-Succinimidyl Ester of Acrylamidohexanoic Acid (N6) 59  
           D. Other Protein-Coupling Methods 61  
        IV. Optimizing the Placement of Beads for Traction Force Microscopy 61  
        V. Manipulation of Gel Geometry 62  
           A. Preparation of Polyacrylamide Microbeads 62  
           B. Preparation of a Model Three-Dimensional Culture System 63  
        VI. Concluding Remarks 65  
        References 66  
     Chapter 3: Microscopic Methods for Measuring the Elasticity of Gel Substrates for Cell Culture: Microspheres, Microindenters, and Atomic Force Microscopy 68  
        I. Introduction 69  
        II. Probing with Microspheres Under Gravitational Forces 70  
        III. Atomic Force Microscopy 71  
        IV. Probing with Spherically Tipped Glass Microindenters 74  
           A. Preparation and Calibration of the Spherically Tipped Microindenter 75  
           B. Calibration of the Microscope and Micromanipulator 75  
           C. Characterization and Calibration of the Microindenter 76  
           D. Measurement of the Indentations of Hydrogels in Response to Forces of the Microindenter 78  
           E. Data Analysis 82  
           F. Discussion 83  
        V. Conclusions 85  
        References 85  
     Chapter 4: Surface Patterning 88  
        I. Introduction 89  
        II. Patterning with Electrodynamic Instabilities 90  
           A. Procedure for Patterning with Electrohydrodynamic Instabilities 92  
           B. Cell Migration on Topographic Surfaces 93  
        III. Lithography Without a Clean Room 94  
           A. Photolithography Basics 95  
        IV. Patterning at the Micro- and Nanoscale with Polymer Mixtures and Block Copolymers 101  
           A. Principles and Procedures for Controlling Pattern Formation with Polymer Mixtures and Block Copolymers 102  
        V. Summary 105  
        Acknowledgments 105  
        References 106  
     Chapter 5: Molecular Engineering of Cellular Environments: Cell Adhesion to Nano-Digital Surfaces 110  
        I. Introduction: Sensing Cellular Environments 111  
        II. Nano-Digital Chemical Surfaces for Regulating Transmembrane-Receptor Clustering 116  
           A. Extended Nanopatterns and Biofunctionalization 116  
           B. Micro-Nanopatterns for Spatially Controlled Molecular Clustering 118  
           C. Cellular Responses to Nano-Digital and Biofunctionalized Surfaces 122  
           D. Local Versus Global Effects of Ligand Density on Cell Adhesion 125  
           E. Cell Spreading and Migration on Different Nanopatterns 127  
           F. High-Resolution Visualization of Cells in Contact with Biofunctionalized Nanopatterns 128  
        III. Outlook for the Future 129  
        Acknowledgments 129  
        References 130  
  Part II: Subcellular Mechanical Properties and Activities 134  
     Chapter 6: Probing Cellular Mechanical Responses to Stimuli Using Ballistic Intracellular Nanorheology 136  
        I. Introduction 138  
           A. Why Cell Mechanics? 138  
           B. Particle-Tracking Nanorheology: Measuring the Local Viscoelastic Properties of a Cell by Tracking the Brownian Motion of Individual Nanoparticles Embedded in the Cell 139  
           C. Local and Global Viscoelastic Properties of the Cell 140  
           D. Interstitial Versus Mesoscale Viscosity of the Cytoplasm 140  
           E. Viscoelastic Properties of the Cytoplasm Depend on the Timescale of Applied Forces 141  
           F. The Viscoelastic Properties of the Cytoplasm Depend on the Amplitude of Applied Forces 142  
           G. Measurements at the Cell Surface Versus in the Cytoplasm 142  
           H. Methods of Delivery of Nanoparticles to the Cytoplasm 144  
           I. BIN: Proof of Principle 145  
           J. Intracellular Micromechanics of Cells in 3D Matrix 146  
        II. Materials and Instrumentation 148  
           A. Preparation of Nanoparticles 148  
           B. Cell Culture 148  
           C. Ballistic Injection of Nanoparticles 150  
           D. Encapsulation of Cells in a 3D Matrix 150  
           E. Imaging of Fluctuating Nanoparticles Embedded in the Cell 150  
        III. Procedures 150  
           A. Preparation of Nanoparticles 150  
           B. Ballistic Injection of Nanoparticles 151  
           C. Cell Seeding and Encapsulation in a 3D Matrix 152  
           D. BIN Analysis 153  
        IV. Pearls and Pitfalls 156  
        V. Concluding Remarks 157  
           A. Unique Advantages of BIN 157  
           B. Advantages of Traditional Particle-Tracking Nanorheology Are Maintained by BIN 157  
        Acknowledgments 158  
        References 158  
     Chapter 7: Multiple-Particle Tracking and Two-Point Microrheology in Cells 162  
        I. Introduction 163  
        II. Principles of Passive Tracer Microrheology 167  
           A. Conventional Passive Microrheology 167  
           B. Expected Tracer Motion and Tracking Performance 168  
           C. Two-Point Microrheology 169  
        III. Multiple-Particle Tracking Algorithms 170  
           A. Image Restoration 171  
           B. Locating Possible Particle Positions 171  
           C. Eliminating Spurious or Unwanted Particle Trajectories 172  
           D. Linking Positions into Trajectories 173  
           E. Available Software Packages and Computing Resources 175  
        IV. Computing Rheology from Tracer Trajectories 176  
           A. Computing Mean-Squared Displacements 176  
           B. Computing Two-Point Mean-Squared Displacements 178  
           C. Applying Automated Image Analysis for Statistics 179  
           D. Converting MSDs to Rheology 180  
        V. Error Sources in Multiple-Particle Tracking 182  
           A. Random Error (Camera Noise) 183  
           B. Systematic Errors 184  
           C. Dynamic Error 186  
           D. Sample Drift, Computational Detrending, and Its Limitations 187  
           E. Effects of Measurement Errors on the MSD 188  
        VI. Instrument Requirements for High-Performance Tracking 189  
           A. Isolation from Vibration, Acoustic Noise, and Thermal Drift 189  
           B. Microscopy-Generation of High-Contrast Tracer Images 189  
           C. Using Low-Noise, Non-interlaced Camera 191  
           D. Using High-Intensity, Filtered Illuminator 192  
           E. Using Synthetic Tracers to Increase Visibility 193  
        VII. Example: Cultured Epithelial Cells 193  
           A. Particle-Tracking Results for TC7 Epithelial Cells 193  
           B. TPM of TC7 Epithelial Cells 195  
           C. Computing Stress Fluctuation Spectra 197  
        VIII. Conclusions and Future Directions 198  
        References 198  
     Chapter 8: Imaging Stress Propagation in the Cytoplasm of a Living Cell 200  
        I. Introduction 201  
        II. Detecting External Stress-Induced Displacements in the Cytoplasm 202  
           A. Green Fluorescent Protein Transfection and Cell Culture 202  
           B. Application of Periodic Mechanical Stress 203  
           C. Image Acquisition 203  
           D. Image Partitioning 204  
           E. Array Shifting 205  
           F. Image Match Searching 206  
           G. Synchronous Displacement 206  
           H. Signal-to-Noise Ratio 208  
        III. Imaging Displacement and Stress Maps in a Live Cell 209  
           A. Quantifying Displacement Maps 209  
           B. Computing Stress Maps from Displacement Maps 211  
           C. Modulation of Stress Distribution Within a Living Cell 211  
           D. Application of Mechanical Loads in Any Direction Using 3D-MTC 213  
           E. Mechanical Anisotropic Signaling to the Cytoskeleton and to the Nucleolus 216  
           F. Limitations of 3D-MTC 218  
        IV. Future Prospects 218  
        Acknowledgments 218  
        References 219  
     Chapter 9: Probing Intracellular Force Distributions by High-Resolution Live Cell Imaging and Inverse Dynamics 220  
        I. Introduction 221  
        II. Methods 223  
           A. Actin Cytoskeleton Mechanics in Cell Protrusion 223  
           B. Force Reconstruction 233  
           C. Probing Heterogeneous Network Elasticity with Speckle Microscopy 242  
        III. Summary 248  
        IV. Appendix 249  
           A. Solution of the Inverse Problem 249  
        Acknowledgments 252  
        References 252  
     Chapter 10: Analysis of Microtubule Curvature 258  
        I. Introduction 259  
        II. Rationale 261  
        III. Raw Data Collection 263  
           A. Point-Click Method 264  
           B. Semiautomated Methods 264  
           C. Data Collection Errors 265  
        IV. Validation Strategy 266  
           A. Modeling of Semiflexible Polymers 268  
           B. Generation of Simulated Data 269  
           C. Validation of Semiflexible Polymer Simulation 274  
        V. Curvature Estimation Methods 277  
           A. Three-Point Method 277  
           B. Shape-Fitting Method 277  
           C. Constructing the Curvature Distribution 278  
        VI. Results 279  
           A. Three-Point Method 279  
           B. Shape-Fitting Method 283  
        VII. Discussion 285  
        VIII. Conclusions 286  
        Acknowledgments 286  
        References 287  
     Chapter 11: Nuclear Mechanics and Methods 290  
        I. Introduction 291  
        II. Experimental Methods for Probing Nuclear Mechanical Properties 294  
           A. Isolation of Individual Nuclei 294  
           B. Micropipette Aspiration Experiments 296  
           C. Substrate Strain Experiments 298  
           D. Compression Experiments 301  
           E. Indentation by AFM 306  
           F. Particle-Tracking Microrheology 307  
           G. Microneedle-Imposed Extension 308  
        III. Discussion and Prospects 309  
        IV. Outlook 311  
        References 312  
  Part III: Cellular and Embryonic Mechanical Properties and Activities 316  
     Chapter 12: The Use of Gelatin Substrates for Traction Force Microscopy in Rapidly Moving Cells 318  
        I. Introduction 319  
        II. Rationale 320  
        III. Methods 321  
           A. Preparation of Gelatin Substrates 321  
           B. Plating Cells onto a Gelatin Substrate 323  
           C. Data Collection and Analysis 324  
           D. Trouble-Shooting Guide 326  
        IV. Applications of the Gelatin Traction Force Assay to Study Mechano-signal Transduction in Moving Keratocytes 328  
        V. Other Applications and Future Directions 330  
        VI. Summary 331  
        Acknowledgments 331  
        References 331  
     Chapter 13: Microfabricated Silicone Elastomeric Post Arrays for Measuring Traction Forces of Adherent Cells 334  
        I. Introduction 335  
        II. Microfabrication of the Micropost Arrays 337  
           A. Standard Photolithography 338  
           B. SU-8 Photolithography for Micropost Arrays 339  
           C. Soft Lithography 341  
           D. Troubleshooting anf Helpful Suggestions 342  
        III. Characterization of Micropost Spring Constant 342  
           A. Beam-Bending Theory 342  
           B. Measurement of Micropost Stiffness 343  
        IV. Analysis of Traction Forces Through Micropost Deflections 344  
           A. Substrate Preparation 344  
           B. Staining and Microscopy of Micropost Arrays 346  
           C. Image Analysis Techniques 346  
        V. Experimental Applications of Microposts and Discussion 347  
        Acknowledgments 348  
        References 348  
     Chapter 14: Cell Adhesion Strengthening: Measurement and Analysis 350  
        I. Introduction 351  
        II. The Cell Adhesion Process 351  
        III. Measurement Systems for Adhesion Characterization 352  
        IV. Hydrodynamic Assay for Quantifying Adhesion Strength 355  
           A. Experimental Design 355  
           B. Interpretation of Adhesion Strength Results 358  
        V. Quantitative Biochemical Methods for Adhesion Analysis 359  
           A. Quantification of Bound Integrin 359  
           B. Wet-Cleaving. Assay for Localized FA Protein Quantification 359  
           C. Immunofluorescence Staining and Quantification 360  
        VI. Simple Mathematical Modeling of Adhesion Strengthening Mechanics 362  
           A. Resolving Forces for a Cell Under Hydrodynamic Shear 362  
           B. Mathematical Analysis of Adhesion Strengthening Mechanics 364  
        VII. Discussion 365  
        Acknowledgments 365  
        References 365  
     Chapter 15: Studying the Mechanics of Cellular Processes by Atomic Force Microscopy 368  
        I. Introduction 369  
        II. Instrumentation and Operation Modes 370  
           A. Principal Components 370  
           B. Cantilevers 371  
           C. Combination of Optical Microscopy and AFM 373  
        III. Operating Modes 374  
           A. Imaging Modes 374  
           B. Force Curve Mode 378  
           C. Force Volume Mode 379  
        IV. Investigations of Live Cells 379  
           A. Imaging 379  
           B. Measuring Stiffness 379  
           C. Dynamics of Cellular Mechanical Properties 386  
           D. Effects of Cell Stiffness on AFM Imaging 388  
        V. Outlook 389  
        Acknowledgments 390  
        References 390  
     Chapter 16: Using Force to Probe Single-Molecule Receptor-Cytoskeletal Anchoring Beneath the Surface of a Living Cell 394  
        I. Generic Methods and Physical Foundations 395  
           A. Using Force to Probe Single-Molecule Interactions 395  
           B. Testing Bonds on Solid Substrates 396  
           C. Simple Physics of Breaking a Bond 398  
           D. Forcing Bonds to Dissociate Faster Than Their Spontaneous Off Rate 400  
           E. Force Ramp Method and Examples of Testing Protein-Protein Interactions In Vitro 401  
        II. Probing Bonds at Cell Surfaces 404  
           A. Phenomenology of Unbinding Events 404  
           B. Experimental Frustrations 407  
           C. Most Likely Site of Molecular Unbinding When Probing Bonds at Cell Surfaces 408  
           D. Adhesive Failure Without Membrane-Cytoskeletal Separation 409  
           E. Membrane-Cytoskeletal Unbinding Followed by Adhesive Detachment 411  
           F. Overlapping Bond Failure Processes 412  
        III. Future Challenge and Opportunity 414  
        Acknowledgments 416  
        References 416  
     Chapter 17: High-Throughput Rheological Measurements with an Optical Stretcher 418  
        I. Introduction 419  
        II. Rationale 422  
        III. Methods 423  
           A. Basic Experimental Setup 423  
           B. Preparation of Cells 425  
           C. Measurement Process 425  
           D. Computer Control of the Measurement 426  
           E. Image Analysis 427  
           F. Interpretation of the Data 428  
        IV. Additional Notes on Equipment 433  
           A. Optical Fibers 433  
           B. Laser Source 434  
           C. Microfluidic Chip 435  
           D. Microscopy Technique 439  
           E. Camera 440  
        V. Discussion 440  
        VI. Summary 442  
        Acknowledgments 442  
        References 442  
     Chapter 18: Measuring Mechanical Properties of Embryos and Embryonic Tissues 446  
        I. Introduction 447  
           A. Biomechanics and Developmental Biology 447  
           B. Why Do We Want to Understand the Mechanical Basis of Morphogenesis? 448  
        II. Applying and Measuring Forces of 10 nN to 10 muN 449  
        III. Nanonewton Force Apparatus: Parts, Function, and Operation 452  
        IV. Preparation of Tissue Samples 453  
        V. Measurement of the Time-Dependent Elasticity of Embryos or Tissue Explants 455  
        VI. Spring and Dashpot Models of Viscoelasticity Represent More Complex Structural Sources 456  
        VII. Challenges of Working with Embryonic Tissues 456  
        VIII. Use of Standard Engineering Terms and Units 458  
        IX. Future Prospects 458  
        References 458  
  Part IV: Mechanical Stimuli to Cells 462  
     Chapter 19: Tools to Study Cell Mechanics and Mechanotransduction 464  
        I. Introduction 465  
        II. Control of Cell Shape, Cytoskeletal Organization, and Cell Fate Switching 467  
           A. Microcontact Printing of Micropatterned Substrates for Cell Culture 468  
           B. Application Notes on Microcontact Printing 470  
           C. Extension and Future Development of Microcontact Printing 474  
        III. Probing Cell Mechanics, Cytoskeletal Structure, and Mechanotransduction 475  
           A. Magnetic Twisting Cytometry (MTC) 476  
           B. Applications of MTC 479  
           C. Extension and Future Development of MTC 480  
           D. Magnetic Pulling Cytometry (MPC) 481  
           E. Applications of MPC 488  
        IV. Discussion and Future Implications 488  
        References 490  
     Chapter 20: Magnetic Tweezers in Cell Biology 494  
        I. Introduction 495  
        II. Physics of Magnetic Tweezers 496  
        III. Magnetic Field Considerations 498  
           A. Sources of Magnetic Field 498  
           B. Magnet Pole Design 499  
        IV. Magnetic Particle Selection 500  
        V. Basic Solenoid Apparatus 502  
        VI. Force Calibration 503  
           A. Calibration Sample Protocol 505  
           B. Calibration Procedure 506  
           C. Direction of Magnetic Force 506  
           D. Bread-Tracking System 507  
           E. Data Interpretation 507  
        VII. Experimental Procedures 508  
        References 512  
     Chapter 21: Optical Neuronal Guidance 516  
        I. Introduction 517  
           A. Neuron Structure 517  
           B. Neuronal Cells in Development 517  
           C. Growth Cone Movement and Guidance 519  
           D. Existing Guidance Methods 521  
        II. Apparatus 522  
           A. Laser Light Sources 522  
           B. Laser Light Control Elements 523  
           C. Microscope Irradiation and Imaging 525  
           D. Cell Culture System 525  
           E. Adapting Existing Systems for Optical Guidance 529  
        III. Experiments 530  
           A. Turns 530  
           B. Accelerated Growth 531  
           C. Bifurcations 532  
           D. Other Observations 532  
        IV. Plausible Mechanisms of Optical Guidance 534  
           A. Filopodial Asymmetries 534  
           B. Retrograde Flow 536  
           C. Actin Polymerization via Membrane Tweezing 536  
           D. Laser-Induced Heating 536  
        V. Summary 537  
        Acknowledgments 538  
        References 538  
     Chapter 22: Microtissue Elasticity: Measurements by Atomic Force Microscopy and Its Influence on Cell Differentiation 542  
        I. Introduction 543  
        II. AFM in Microelasticity Measurements 547  
           A. AFM Probing and Analysis 547  
           B. General Issues in Sample Preparation 551  
        III. Materials Characterization 552  
           A. Artificial Matrices 552  
           B. Cell-Secreted Matrices 557  
           C. Passive Tissue Elasticity 559  
        IV. Assessing Mechanical Influences on Cells 562  
        References 563  
     Chapter 23: Demystifying the Effects of a Three-Dimensional Microenvironment in Tissue Morphogenesis 568  
        I. Introduction 569  
        II. Rationale 571  
           A. Stromal-Epithelial Interactions 571  
           B. ECM Mechanics and Epithelial Behavior 572  
           C. 3D Organotypic Model Systems 577  
        III. Methods 579  
           A. Engineered Cell/Tissue Explants 579  
           B. Isolation of Bulk Proteins 586  
           C. Isolation of Bulk mRNA 588  
           D. Rapid Protein Isolation Techniques 590  
           E. Immunofluorescence 592  
        IV. Materials 594  
           A. Engineering Tissue Explants 594  
           B. Isolation of Bulk Proteins 596  
           C. Isolation of Bulk mRNA 596  
           D. Rapid Protein Isolation Techniques 597  
           E. Immunofluorescence 597  
        V. Discussion 598  
        Acknowledgments 600  
        References 601  
  Index 606  
  Volumes in Series 622  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz