Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Soil and Environmental Chemistry
  Großes Bild
 
Soil and Environmental Chemistry
von: William F. Bleam
Elsevier Textbooks, 2011
ISBN: 9780123849816
495 Seiten, Download: 17693 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: A (einfacher Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Front Cover 1  
  Soil and Environmental Chemistry 4  
  Copyright 5  
  Dedication 6  
  Contents 8  
  Preface 16  
  Chapter 1: Elements 18  
     1.1. Introduction 18  
     1.2. A Brief History of the Solar System and Planet Earth 19  
     1.3. The Composition of Earth's Crust and Soils 20  
     1.4. The Abundance of Elements in the Solar System, Earth's Crust, and Soils 20  
     1.5. Elements and Isotopes 21  
     1.6. Nuclear Binding Energy 23  
     1.7. Enrichment and Depletion during Planetary Formation 25  
     1.8. Planetary Accretion 26  
     1.9. The Rock Cycle 29  
     1.10. Soil Formation 30  
     1.11. Concentration Frequency Distributions of the Elements 33  
     1.12. Estimating the Most Probable Concentration and Concentration Range Using the LOGARITHMIC TRANSFORMATION 35  
     1.13. Summary 38  
     Appendix 1A. Factors Governing Nuclear Stability and Isotope Abundance 39  
        1A.1. The Table of Isotopes and Nuclear Magic Numbers 39  
        1A.2. Nuclear Magic Numbers 39  
     Appendix 1B. Nucleosynthesis 42  
        1B.1. Nuclear Reactions 42  
        1B.2. Nuclear Fusion 43  
        1B.3. Neutron Capture 45  
        1B.4. Cosmic Ray Spallation 47  
        1B.5. Transuranium Elements 47  
     Appendix 1C. Thermonuclear FUSION Cycles 49  
        1C.1. The CNO Cycle 49  
        1C.2. The Triple-Alpha Process 50  
        1C.3. Carbon Burning 51  
     Appendix 1D. Neutron-Emitting Reactions that Sustain the S-Process 51  
     Appendix 1E. Random Sequential Dilutions and the Law of Proportionate Effect 52  
     Appendix 1F. The Estimate of Central Tendency and Variation of a Log-Normal Distribution 54  
  Chapter 2: Soil Moisture and Hydrology 58  
     2.1. Introduction 58  
     2.2. Water Resources and the Hydrologic Cycle 59  
     2.3. Water Budgets 60  
     2.4. Residence Time and Runoff Ratios 60  
     2.5. Groundwater Hydrology 62  
        2.5.1. Water in the Porosphere 62  
        2.5.2. Hydrologic Units 64  
        2.5.3. Darcy’s Law 65  
        2.5.4. Hydrostatic Heads and Hydrostatic Gradients 66  
        2.5.5. Intrinsic Permeability 71  
        2.5.6. Groundwater Flow Nets 73  
     2.6. Vadose Zone Hydrology 75  
        2.6.1. Capillary Forces 75  
        2.6.2. Soil Moisture Zones 77  
        2.6.3. The Water Characteristic Curve and Vadose Zone Hydraulic Conductivity 79  
     2.7. Elementary Solute Transport Models 79  
        2.7.1. The Retardation Coefficient Model 79  
        2.7.2. Plate Theory: Multiple Sequential Partitioning 82  
     2.8. Summary 88  
     Appendix 2A. Soil Moisture Recharge and Loss 88  
     Appendix 2B. The Water-Holding Capacity of a Soil Profile 89  
     Appendix 2C. Predicting Capillary Rise 92  
     Appendix 2D. Symbols and Units in the Derivation of the Retardation Coefficient Model of Solute Transport 93  
     Appendix 2E. Symbols and Units in the Derivation of the Plate Theory Model of Solute Transport 94  
     Appendix 2F. Empirical Water Characteristic Function and Unsaturated Hydraulic Conductivity 96  
  Chapter 3: Clay Mineralogy and Clay Chemistry 102  
     3.1. Introduction 102  
     3.2. Mineral Weathering 103  
        3.2.1. Mineralogy 103  
     3.3. The Structure of Layer Silicates 106  
        3.3.1. Coordination Polyhedra 107  
        3.3.2. The Phyllosilicate Tetrahedral Sheet 108  
        3.3.3. The Phyllosilicate Octahedral Sheet 109  
        3.3.4. Kaolinite Layer Structure 110  
        3.3.5. Talc Layer Structure 110  
        3.3.6. Mica-Illite Layer Structure 111  
        3.3.7. Chlorite and Hydroxy-Interlayered Smectite Layer Structure 113  
        3.3.8. Layer Structure of the Swelling Clay Minerals: Smectite and Vermiculite 114  
     Appendix 3A. Formal Oxidation Numbers 121  
     Appendix 3B. The Geometry of Pauling's Radius Ratio Rule 122  
     Appendix 3C. Bragg's Law and X-Ray Diffraction in Layer Silicates 126  
     Appendix 3D. Osmotic Model of Interlayer Swelling Pressure 126  
     Appendix 3E. Experimental Estimates of Interlayer Swelling Pressure 128  
  Chapter 4: Ion Exchange 134  
     4.1. Introduction 134  
     4.2. The Discovery of Ion Exchange 135  
     4.3. Ion Exchange Experiments 136  
        4.3.1. Preparing Clay Saturated with a Single Cation 136  
        4.3.2. Measuring Cation Exchange Capacity 137  
        4.3.3. Measuring the Cation Exchange Isotherm 137  
        4.3.4. Selectivity Coefficients and the Exchange Isotherm 139  
     4.4. Interpreting the Ion Exchange Isotherm 142  
        4.4.1. The Ion Exchange Isotherm for Symmetric Exchange 143  
        4.4.2. The Ion Exchange Isotherm for Asymmetric Exchange 144  
        4.4.3. Effect of Ionic Strength on the Ion Exchange Isotherm 146  
        4.4.4. Effect of Ion Selectivity on the Ion Exchange Isotherm 148  
        4.4.5. Other Influences on the Ion Exchange Isotherm 155  
     4.5. Summary 157  
     Appendix 4A. Thermodynamic and Conditional Selectivity Coefficients 159  
     Appendix 4B. Nonlinear Least Square Fitting of Exchange Isotherms 160  
     Appendix 4C. Equivalent Fraction-Dependent Selectivity Coefficient for (Mg2+, Ca2+) Exchange on the Libby Vermiculite 161  
  Chapter 5: Water Chemistry 168  
     5.1. The Equilibrium Constant 168  
        5.1.1. Thermodynamic Functions for Chemical Reactions 168  
        5.1.2. Gibbs Energy of Reaction and the Equilibrium Constant 169  
     5.2. Activity and the Equilibrium Constant 170  
        5.2.1. Concentrations and Activity 170  
        5.2.2. Ionic Strength I 171  
        5.2.3. Empirical Ion Activity Coefficient Expressions 171  
     5.3. Modeling Water Chemistry 173  
        5.3.1. Simple Equilibrium Systems 173  
        5.3.2. Water Chemistry Simulations 187  
        5.3.3. Modeling the Chemistry of Environmental Samples: Groundwater, Soil Pore Water, and Surface Water 196  
     5.4. Summary 204  
     Appendix 5A. ChemEQL Result Data File Format 204  
     Appendix 5B. Validating Water Chemistry Simulations 205  
     Appendix 5C. Validation Assessment for Examples 5.13 and 5.16 210  
     Appendix 5D. Cinnabar Solubility in an Open System Containing the Gas Dihydrogen Sulfide 213  
     Appendix 5E. Simultaneous Calcite-Apatite-Pyromorphite Solubility 216  
     Appendix 5F. Simultaneous Gibbsite-Variscite Solubility 217  
     Appendix 5G. Apatite Solubility as a Function of pH 217  
     Appendix 5H. Effect of the Citrate on the Solubility of the Calcium Phosphate Mineral Apatite 218  
     Appendix 5I. Effect of the Fungal Siderophore Desferrioxamine B on the Solubility of the Iron Oxyhydroxide Goethite 220  
  Chapter 6: Natural Organic Matter and Humic Colloids 226  
     6.1. Introduction 226  
     6.2. Soil Carbon Cycle 226  
        6.2.1. Carbon Fixation 227  
        6.2.2. Carbon Mineralization 229  
        6.2.3. Oxidation of Organic Compounds by Dioxygen 230  
     6.3. Soil Carbon 234  
        6.3.1. Carbon Turnover Models 234  
        6.3.2. Soil Carbon Pools 238  
     6.4. Dissolved Organic Carbon 240  
        6.4.1. Organic Acids 240  
        6.4.2. Amino Acids 241  
        6.4.3. Extracellular Enzymes 241  
        6.4.4. Siderophores 241  
        6.4.5. Biosurfactants 245  
     6.5. Humic Substances 246  
        6.5.1. Extraction and Fractionation 246  
        6.5.2. Elemental Composition 247  
        6.5.3. Chemical Composition 248  
     6.6. Humic Colloids 262  
     6.7. Summary 263  
     Appendix 6A. Hydroxamate and Catecholamide Siderophore Moieties 264  
     Appendix 6B. Surface Microlayers 267  
     Appendix 6C. Humic Oxygen Content and Titratable Weak Acids 269  
     Appendix 6D. Hydrophobic and Hydrophilic Colloids 269  
  Chapter 7: Acid-Base Chemistry 274  
     7.1. Introduction 274  
     7.2. Principles of Acid-Base Chemistry 275  
        7.2.1. Dissociation: The Arrhenius Model of Acid-Base Reactions 275  
        7.2.2 Hydrogen Ion Transfer: The Br nsted-Lowery Modelof Acid-Base Reactions 276  
        7.2.3 Conjugate Acids and Bases 276  
        7.2.4 Defining Acid and Base Strength 277  
        7.2.5 Water Reference Level 278  
        7.2.6 The Aqueous Carbon Dioxide Reference Level 279  
     7.3. Sources of Environmental Acidity and Basicity 280  
        7.3.1. Chemical Weathering of Rocks and Minerals 282  
        7.3.2. Silicate Rocks 282  
        7.3.3. Carbonate Rocks 284  
        7.3.4. Sulfide Minerals 285  
        7.3.5. Evaporite Rocks 286  
     7.4. Atmospheric Gases 286  
        7.4.1. Carbon Dioxide: Above Ground 286  
        7.4.2. Carbon Dioxide: Below Ground 288  
        7.4.3. Sulfur Oxides 288  
        7.4.4. Nitrogen Oxides 290  
     7.5. Ammonia-Based Fertilizers and Biomass Harvesting 293  
     7.6. Charge Balancing in Plant Tissue and the Rhizosphere 295  
        7.6.1. Water Alkalinity 297  
        7.6.2. Carbonate Alkalinity 298  
        7.6.3. Silicate Alkalinity 298  
        7.6.4. The Methyl Orange End-Point 299  
        7.6.5. Mineral Acidity 300  
     7.7. Mechanical Properties of Clay Colloids and Soil Sodicity 300  
        7.7.1. Clay Plasticity and Soil Mechanical Properties 301  
        7.7.2. Clay Content and Granular Particle Contacts 303  
        7.7.3. Sodicity 305  
        7.7.4. Sodium-Ion Accumulation on the Clay Exchange Complex: ESP 306  
        7.7.5. Pore Water Electrical Conductivity ECW 309  
        7.7.6. Extreme Alkalinity: Soil pH>8.4 310  
        7.7.7. Predicting Changes in Pore Water SAR 313  
     7.8. Exchangeable Acidity 315  
        7.8.1. Exchangeable Calcium and Soil Alkalinity 315  
        7.8.2. Gibbsite Solubility 315  
        7.8.3. The Role of Asymmetric (Al3þ,Ca2þ) Exchange 317  
        7.8.4. Neutralizing Exchangeable Soil Acidity 318  
     7.9. Summary 319  
     Appendix 7A. Buffer Index 320  
     Appendix 7B. Converting Mass Fraction to Sum-of-Oxides Composition 322  
     Appendix 7C. Saturation Effect: Atmospheric Conversion of Sulfur Trioxide to Sulfuric Acid 322  
     Appendix 7D. Bicarbonate and Carbonate Reference Levels 323  
     Appendix 7E. Calculating the pH of a Sodium Carbonate Solution 325  
     Appendix 7F. Calculating the Aqueous Carbon Dioxide Concentration in a Weak Base Solution 326  
     Appendix 7G. Ion Exchange Isotherm for Asymmetric (Ca2+, Al3+) Exchange 327  
     Appendix 7H. The Effect of (Na+, Ca2+) Exchange on the Critical Coagulation Concentration of Montmorillonite 330  
     Appendix 7I. Predicting Changes in SAR by Water Chemistry Simulation 333  
  Chapter 8: Redox Chemistry 338  
     8.1. Introduction 338  
     8.2. Redox Principles 339  
        8.2.1. Formal Oxidation Numbers 339  
        8.2.2. Balancing Reduction Half Reactions 341  
        8.2.3. Reduction Half Reactions and Electrochemical Cells 343  
        8.2.4. The Nernst Equation 344  
     8.3. Interpreting Redox Stability Diagrams 348  
        8.3.1. Environmental Redox Conditions 348  
        8.3.2. Measuring Environmental Reduction 350  
        8.3.3. Pourbaix Stability Diagrams: Preparationand Interpretation 351  
        8.3.4. Water Stability Limits 351  
        8.3.5. The Solute-Solute Reduction Boundary 353  
        8.3.6. The Solute-Solute Hydrolysis Boundary 355  
        8.3.7. The Solute-Precipitate Boundary 356  
        8.3.8. The Solute-Precipitate Reduction Boundary 357  
        8.3.9. The Precipitate-Precipitate Reduction Boundary 358  
        8.3.10. Simple Rules for Interpreting Pourbaix Diagrams 360  
     8.4. Microbial Respiration and Electron Transport Chains 362  
        8.4.1. Catabolism and Respiration 364  
        8.4.2. Electron Transport Chains 366  
        8.4.3. Environmental Redox Conditions and Microbial Respiration 377  
     8.5. Summary 378  
     Appendix 8A. Assigning Formal Oxidation Numbers 379  
     Appendix 8B. Converting (pe, pH) Redox Coordinates into (EH, pH) Coordinates 380  
     Appendix 8C. Limitations in the Measurement of the Environmental Reduction Potential Using Platinum ORP Electrodes 382  
  Chapter 9: Adsorption and Surface Chemistry 388  
     9.1. Introduction 388  
     9.2. Mineral and Organic Colloids as Environmental Adsorbents 389  
     9.3. The Adsorption Isotherm Experiment 391  
     9.4. Hydrophobic and Hydrophilic Colloids 396  
     9.5. Interpreting the Adsorption Isotherm Experiment 396  
        9.5.1. The Langmuir Adsorption Model 397  
        9.5.2. Ion Exchange Adsorption Isotherms 399  
        9.5.3. Linear Adsorption or Partitioning Model 400  
     9.6. Variable-Charge Mineral Surfaces 404  
     9.7. The Adsorption Envelope Experiment: Measuring pH-Dependent Ion Adsorption 405  
        9.7.1. Adsorption Edges 406  
        9.7.2. Measuring pH-Dependent Surface Charge 407  
        9.7.3. Proton Surface Charge Sites 408  
     9.8. Valence Bond Model of Proton Sites 409  
        9.8.1. Interpreting pH-Dependent Ion Adsorption Experiments 411  
     9.9. Surface Complexes 412  
     9.10. Summary 416  
     Appendix 9A. Particle Sedimentation Rates in Water: Stokes's Law 417  
     Appendix 9B. Linear Langmuir Expression 418  
     Appendix 9C. Hydrolysis Model of Proton Sites 419  
  Chapter 10: Risk Assessment 426  
     10.1. Introduction 426  
     10.2. The Federal Risk Assessment Paradigm 428  
        10.2.1. Risk Assessment 428  
        10.2.2. Risk Management and Mitigation 428  
     10.3. Dose-Response Assessment 428  
        10.3.1. Dose-Response Distributions 429  
        10.3.2. The No-Threshold One-Hit Model 430  
        10.3.3. Low-Dose Extrapolation of Noncarcinogenic Response Functions 431  
        10.3.4. Estimating the Steady-State Body Burden 432  
        10.3.5. Reference Dose RfD 433  
        10.3.6. Low-Dose Extrapolation of Carcinogenic Response Functions 433  
     10.4. Exposure Pathway Assessment 436  
        10.4.1. Receptors 436  
        10.4.2. Exposure Routes 437  
        10.4.3. Exposure Points 439  
        10.4.4. Fate and Transport 440  
        10.4.5. Primary and Secondary Sources 441  
        10.4.6. Exposure Assessment 442  
     10.5. Intake Estimates 442  
        10.5.1. Averaging Time 442  
        10.5.2. Exposure Factors 444  
     10.6. Risk Characterization 445  
        10.6.1. The Incremental Excess Lifetime Cancer Risk 445  
        10.6.2. The Hazard Quotient 447  
     10.7. Exposure Mitigation 448  
     10.8. Summary 451  
     Appendix 10A. Chemical- and Site-Specific Factors that May Affect Contaminant Transport by Surface Water 452  
     Appendix 10B. Chemical- and Site-Specific Factors that May Affect Contaminant Transport by Groundwater 453  
     Appendix 10C. Chemical- and Site-Specific Factors that May Affect Contaminant Transport Involving Soils or Sediments 454  
     Appendix 10D. Chemical- and Site-Specific Factors that May Affect Contaminant Transport Involving Air and Biota 455  
     Appendix 10E. The Water Ingestion Equation 455  
     Appendix 10F. Soil Ingestion Equation 458  
     Appendix 10G. Food Ingestion Equation 459  
     Appendix 10H. Air Inhalation Equation 459  
     Appendix 10I. Hazard Index-Cumulative Noncarcinogenic Risk 460  
     Appendix 10J. Cumulative Target Risk-Cumulative carcinogenic Risk 461  
  References 466  
  Index 480  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz