Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Scanning Probe Microscopy in Nanoscience and Nanotechnology
  Großes Bild
 
Scanning Probe Microscopy in Nanoscience and Nanotechnology
von: Bharat Bhushan
Springer-Verlag, 2010
ISBN: 9783642035357
974 Seiten, Download: 27901 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Scanning Probe Microscopy in Nanoscience and Nanotechnology 4  
     Part I Scanning Probe Microscopy Techniques 32  
        1 Dynamic Force Microscopy and Spectroscopy Using the Frequency-Modulation Technique in Air and Liquids 33  
           1.1 Introduction 33  
           1.2 Basic Principles of the FM Technique 34  
              1.2.1 The Equation of Motion 34  
              1.2.2 Oscillation Behavior of a Self-Driven Cantilever 36  
              1.2.3 Theory of FM Mode Including Tip–Sample Forces 37  
              1.2.4 Measuring the Tip–Sample Interaction Force 39  
              1.2.5 Experimental Comparison of the FM Mode with the Conventional Amplitude-Modulation-mode in Air 41  
           1.3 Mapping of the Tip–Sample Interactions on DPPC Monolayers in Ambient Conditions 42  
           1.4 Force Spectroscopy of Single Dextran Monomers in Liquid 45  
           1.5 Summary 48  
              Acknowledgements 49  
           References 49  
        2 Photonic Force Microscopy: From Femtonewton Force Sensing to Ultra-Sensitive Spectroscopy 52  
           2.1 Introduction 53  
           2.2 Principles of Optical Trapping 53  
              2.2.1 Theoretical Background 53  
           2.3 Experimental Implementation 58  
              2.3.1 Optical Tweezers Set-up 58  
              2.3.2 Brownian Motion and Force Sensing 60  
              2.3.3 Optical Trapping of Linear Nanostructures 62  
           2.4 Photonic Force Microscopy 68  
              2.4.1 Bio-Nano-Imaging 68  
              2.4.2 Bio-Force Sensing at the Nanoscale 71  
           2.5 Raman Tweezers 74  
              2.5.1 The Raman Effect 74  
              2.5.2 Experimental Configuration 75  
              2.5.3 Applications 77  
           2.6 Conclusions 82  
           References 82  
        3 Polarization-Sensitive Tip-Enhanced Raman Scattering 86  
           3.1 Introduction 86  
           3.2 Tip-Enhanced Raman Spectroscopy 87  
              3.2.1 Concept and Advantages 87  
              3.2.2 Experimental Implementations of TERS with Side Illumination Optics 89  
              3.2.3 Probes for Tip-Enhanced Raman Spectroscopy 90  
           3.3 Polarized Raman Scattering from Cubic Crystals 93  
              3.3.1 Model for Backscattering Raman Emission in c-Silicon 93  
              3.3.2 Selection Rules 96  
           3.4 Tip-Enhanced Field Modeling 96  
              3.4.1 Phenomenological Model 96  
              3.4.2 Numerical Models and Results 99  
           3.5 Depolarization of Light Scattered by Metallic Tips 102  
           3.6 Polarized Tip-Enhanced Raman Spectroscopy of Silicon Crystals 104  
              3.6.1 Background Suppression 104  
              3.6.2 Selective Enhancement of the Raman Modes Induced by Depolarization 109  
              3.6.3 Evaluation of the Field Enhancement Factor 113  
           3.7 Conclusions 114  
           References 115  
        4 Electrostatic Force Microscopy and Kelvin Force Microscopy as a Probe of the Electrostatic and Electronic Properties of Carbon Nanotubes 118  
           4.1 Introduction 118  
           4.2 Electrostatic Measurements at the Nanometer Scale 119  
              4.2.1 Electrostatic Force Microscopy 119  
                 Principle 119  
                 Phase Shifts Versus Frequency Shifts 120  
                 Capacitive Versus Charge EFM Signals 121  
                 Modulated (1/2) EFM/FM-KFM 122  
              4.2.2 Kelvin Force Microscopy 122  
                 Principle of Amplitude Modulation Kelvin Force Microscopy 122  
                 Open-Loop KFM or ac-EFM 123  
              4.2.3 Lateral Resolution in EFM and KFM 123  
                 Side Capacitance Effects 123  
                 Carbon Nanotube Tip Probes 125  
           4.3 Electrostatic Imaging of Carbon Nanotubes 126  
              4.3.1 Capacitive Imaging of Carbon Nanotubes in Insulating Layers 127  
              4.3.2 EFM Imaging of Carbon Nanotubes and DNA 129  
              4.3.3 Imaging of Native Charges in Carbon Nanotube Loops 131  
           4.4 Charge Injection Experiments in Carbon Nanotubes 132  
              4.4.1 Charge Injection and Detection Techniques 132  
              4.4.2 Experimental Illustration of EFM Signals 133  
                 Abrupt Discharging Processes in Carbon Nanotubes 135  
                 Charge Emission to the Oxide 137  
                 Continuous Discharge Processes 138  
                 Nanotube Charge Versus Oxide Charge 139  
              4.4.3 Inner-Shell Charging of CNTs 141  
              4.4.4 Electrostatic Interactions in SWCNTs 144  
           4.5 Probing the Band Structure of Nanotubes on Insulators 145  
              4.5.1 Imaging the Semiconductor/Metal Character of Carbon Nanotubes 145  
              4.5.2 Imaging the Density of States of Carbon Nanotubes 147  
           4.6 KFM Studies of Nanotube Devices 148  
              4.6.1 Charge Transfers at Nanotube–Metal Interfaces 148  
              4.6.2 Diffusive and Ballistic Transport in Carbon Nanotubes 150  
              4.6.3 Kelvin Force Microscopy of CNTFETs 150  
                 Backgate Operation of CNTFETs 150  
                 KFM Determination of the lever arm of a CNTFET 151  
                 Hysteretic Behavior of CNTFETs and Surface Charges 153  
           4.7 Conclusion 154  
              Acknowledgement 155  
           References 155  
        5 Carbon Nanotube Atomic Force Microscopywith Applications to Biology and Electronics 158  
           5.1 Carbon Nanotube Introduction 158  
           5.2 Carbon Nanotube Synthesis 163  
           5.3 Fabrication of Carbon Nanotube Atomic Force Microscopy Probes 164  
              5.3.1 Fabrication of Carbon Nanotube Atomic Force Microscopy Probes by Gluing 164  
              5.3.2 Mechanical Attachment in Scanning Electron Microscopy 164  
              5.3.3 Fabrication of Carbon Nanotube Atomic Force Microscopy Probes by In Situ Pick-Up 166  
              5.3.4 Miscellaneous Methods for Post-Growth Attachment of Carbon Nanotube to Atomic Force Microscopy Tips 166  
              5.3.5 Metal Catalyst-Assisted Direct-Growth of Carbon Nanotube Atomic Force Microscopy Probes 166  
              5.3.6 Post-Growth Attachment is Currently the Most Optimal Fabrication Process 168  
           5.4 Characteristics and Characterization of Carbon Nanotube Atomic Force Microscopy Tips 170  
           5.5 Applications of Carbon Nanotube Scanning Probe Microscopy 177  
              5.5.1 Functionalization of Carbon Nanotube Tips for Chemical Force Microscopy 177  
              5.5.2 Carbon Nanotube Friction Force Microscopy 181  
              5.5.3 Carbon Nanotube Electric Force Microscopy 181  
              5.5.4 Carbon Nanotube Scanning Tunneling Microscopy 183  
              5.5.5 Carbon Nanotube Magnetic Force Microscopy 184  
              5.5.6 Carbon Nanotube Scanning Near-Field Optical Microscopy 187  
              5.5.7 Biological Applications of Carbon Nanotube Atomic Force Microscopy 188  
           References 194  
        6 Novel Strategies to Probe the Fluid Properties and Revealing its Hidden Elasticity 198  
           6.1 Introduction 199  
           6.2 Basic Theoretical Considerations: Conciliating Simple Liquid Approach to the Viscoelasticity Theory? 201  
              6.2.1 Simple Liquid Description 201  
              6.2.2 The Viscoelastic Approach 202  
           6.3 Conventional Procedure to Determine the Dynamic Properties of Fluids 203  
              6.3.1 Linear Rheology 203  
              6.3.2 Non-Linear Rheology 205  
           6.4 Unpredicted Phenomena and Unsolved Questions: Flow Instabilities, Non-Linearities, Shear Induced Transitions, Extra-Long Relaxation Times, Elasticity in the Liquid State 206  
           6.5 From Macro to Micro and Nanofluidics 210  
           6.6 Analysis of the Viscoelasticity Scanning Method 212  
           6.7 The Question of the Boundary Conditions: Surface Effects, Wetting, and Slippage 215  
           6.8 Novel Description of Conventional Fluids: from Viscous Liquids, Glass Formers to Entangled Polymers. Experiments in Narrow Gap Geometry: Extracting the Shear Elasticity in Viscous Fluids 216  
           6.9 Tribology Meets Rheology. Novel Methods for the Determination of Bulk Dynamic Properties of a Soft Solid or a Fluidic Material 217  
           6.10 Elasticity and Dimensionality in Fluids 221  
           6.11 General Summary and Perspectives 221  
           References 223  
        7 Combining Atomic Force Microscopy and Depth-Sensing Instruments for the Nanometer-Scale Mechanical Characterization of Soft Matter 227  
           7.1 Introduction 227  
           7.2 Determining Elastic Modulus of Compliant Materials from Nanoindentations 229  
           7.3 Determining Elastic Modulus of Compliant Materials from Nanoindentations 234  
           7.4 Modulus Estimate of a Challenging Set of Samples 239  
           References 248  
        8 Static and Dynamic Structural Modeling Analysis of Atomic Force Microscope 252  
           8.1 Introduction 253  
           8.2 Working Principle and Modes 254  
           8.3 Statics of Atomic Force Microscope Cantilever: Effective Stiffness Approach 257  
           8.4 Electrostatic, Surface and Residual Stress Influence on the Atomic Force Microscope Initial Deflection 261  
           8.5 Modeling Tip–Sample Contact 264  
           8.6 Non-Contact Atomic Force Microscope Dynamics: Damping and Influence of Tip–Surface Interaction 269  
           8.7 Dynamics of Intermittent Contact 275  
           8.8 Summary 279  
              Acknowledgement 280  
           References 280  
        9 Experimental Methods for the Calibration of Lateral Forces in Atomic Force Microscopy 285  
           9.1 Introduction 286  
           9.2 Basic Definitions and Relationships 290  
              9.2.1 The Calibration Constants Involved in a Lateral Force Measurement 290  
              9.2.2 Basic Relationships Involving the Calibration Constants 292  
              9.2.3 The Lateral and the Normal Spring Constant of a Rectangular CL 294  
              9.2.4 The Case of In-Plane Deformations 296  
           9.3 Calibration of the Lateral Sensitivity of the PSD 297  
              9.3.1 Available Methods 297  
                 Mirrored Substrate Method 297  
                 Geometrical Optics Method 299  
                 Lateral FDC Method 300  
                 Scanning Across a Vertical Step 301  
              9.3.2 Optical Crosstalk 301  
           9.4 Methods Relying on a Scanning Motion 303  
              9.4.1 The Wedge Method 303  
              9.4.2 Methods Involving the Normal Spring Constant 309  
           9.5 Methods Relying on a Force Balance upon Contact with a Rigid Structure 310  
              9.5.1 Normal Loading upon Contact with a Sloped Substrate 310  
              9.5.2 Normal Loading with the Contact Point off the CL Long Axis 312  
              9.5.3 Lateral Loading of a Horizontal Surface 314  
              9.5.4 Lateral Loading of a Vertical Surface 316  
              9.5.5 Mechanical Crosstalk 316  
                 Considering the Effect of an Offset in the Tip Position 317  
                 Considering the Effect of an Offset in the Position of the Shear Centre 318  
                 Eliminating the Mechanical Crosstalk Effect by Novel Design Concepts 320  
           9.6 Methods Relying on a Force Balance Upon Contact with a Compliant Structure 320  
              9.6.1 The Case of a Vertical Reference Beam 320  
              9.6.2 The Case of a Horizontal Reference Beam 324  
              9.6.3 The Case of a Mechanically Suspended Platform 325  
              9.6.4 The Case of a Magnetically Suspended Platform 328  
           9.7 Methods Relying on Torsional Resonancesof the CL 330  
           9.8 Discussion 332  
           9.9 Concluding Remarks 344  
           References 345  
     Part II Characterization 348  
        10 Simultaneous Topography and Recognition Imaging 349  
           10.1 Introduction 350  
           10.2 AFM Tip Chemistry 352  
           10.3 Operating Principles of TREC 355  
              10.3.1 Half-Amplitude Versus Full-Amplitude Feedback 358  
              10.3.2 Adjusting the Amplitude 361  
              10.3.3 Adjusting the Driving Frequency 364  
              10.3.4 Proofing the Specificity of the Detected Interactions 366  
                 Specificity Proof by Competitive Inhibition 366  
                 Specificity Proof by Amplitude Variation 368  
           10.4 Applications of TREC: Single Proteins, Membranes,and Cells 368  
              10.4.1 Antibiotin Antibodies Adsorbed to an Organic Semiconductor 368  
              10.4.2 Bacterial S-Layer Lattices 370  
              10.4.3 RBC Membranes 373  
              10.4.4 Cells 375  
           10.5 Conclusion 381  
           References 381  
        11 Structural and Mechanical Mechanisms of Ocular Tissues Probed by AFM 387  
           11.1 Introduction 387  
           11.2 Atomic Force Microscopy 388  
              11.2.1 Principle of Operation 388  
                 Overview 388  
                 Imaging Mode 390  
                 Force Mode 390  
                 Force Mapping Mode 391  
              11.2.2 Instrumentation 391  
              11.2.3 Mechanical Measurements 392  
           11.3 Atomic Force Microscopy in Ophthalmology 394  
              11.3.1 Cornea 394  
                 Structure 394  
                 Corneal Refractive Surgery 398  
                 Corneal Transplant Surgery 398  
              11.3.2 Contact Lenses 398  
                 Surface Characterization 398  
                 Biomechanical Properties 400  
              11.3.3 Lens 400  
                 Structure 400  
                 Mechanics 402  
                 Artificial Lenses 403  
              11.3.4 Retinal Tissue 405  
                 Structure 405  
                 Mechanical Properties 406  
           11.4 Summary and Conclusions 407  
           References 407  
        12 Force-Extension and Force-Clamp AFM Spectroscopies in Investigating Mechanochemical Reactions and Mechanical Properties of Single Biomolecules 418  
           12.1 Introduction 419  
           12.2 Experimental Techniques for Measuring Displacements and Forces at the Single Molecule Level 420  
              12.2.1 Centroid Tracking 420  
              12.2.2 Fluorescence Resonance Energy Transfer 421  
              12.2.3 Magnetic Tweezers 422  
              12.2.4 Optical Traps 422  
              12.2.5 Single Molecule AFM Force Spectroscopy 424  
           12.3 Displacement and Force as Control Parameters in Small Systems 425  
              12.3.1 Displacement Sensitivity and Resolution 425  
              12.3.2 Force Sensitivity and Resolution 427  
           12.4 AFM Force Spectroscopy with a Few Piconewton Sensitivity and at a Single Molecule Level 427  
              12.4.1 Fingerprinting the Biomolecules 428  
              12.4.2 Optimizing the AFM System 428  
           12.5 FX-AFM Probes Mechanical Stability of Proteins and Polysaccharides 429  
              12.5.1 Details of the FX Trace 429  
              12.5.2 What can be Inferred from the FX Trace? 430  
              12.5.3 Applications of FX Force Spectroscopy 431  
           12.6 FC-AFM Probes the Details of Protein (Un)folding and Force-Induced Disulfide Reductions in Proteins 432  
              12.6.1 Details of the FC Trace 432  
              12.6.2 What can be Inferred from the FC Trace? 433  
              12.6.3 Applications of the FC Spectroscopy 435  
           12.7 Some Shortcomings of the FX/FC-AFM Spectroscopies 436  
           References 437  
        13 Multilevel Experimental and Modelling Techniques for Bioartificial Scaffolds and Matrices 447  
           13.1 Scaffolds for Tissue-Engineering Applications 448  
           13.2 Multi-Scale Computer-Aided Approach in Designing and Modelling Scaffold for Tissue Regeneration 451  
              13.2.1 CATE: Computer-Aided Anatomical Tissue Representation, CT and MRI Techniques 451  
              13.2.2 CATE: From Computer-Aided Anatomic 3D Reconstruction to Scaffolds Modelling and Design 454  
              13.2.3 CATE: FEM and CFD-Based Scaffolds Modelling and Design Methods 470  
           13.3 Understanding the Cell and Tissue Mechanics: A Multi-Scale Approach 486  
           13.4 Experimental Techniques for Scaffolds Characterisations 490  
           References 498  
        14 Quantized Mechanics of Nanotubes and Bundles 509  
           14.1 Introduction 509  
           14.2 Quantized Fracture Mechanics Approaches 510  
           14.3 Fracture Strength 514  
           14.4 Impact Strength 515  
           14.5 Hyper-Elasticity, Elastic-Plasticity, Fractal Cracks,and Finite Domains 516  
           14.6 Fatigue Life 516  
           14.7 Elasticity 517  
           14.8 Atomistic Simulations 518  
           14.9 Nanotensile Tests 521  
           14.10 Thermodynamic Limit 524  
           14.11 Hierarchical Simulations and Size Effects: from a Nanotube to a Megacable 525  
           14.12 Conclusions 527  
           References 527  
        15 Spin and Charge Pairing Instabilities in Nanoclusters and Nanomaterials 529  
           15.1 From Atoms to Solids 529  
              15.1.1 Discreteness of Spectrum 531  
              15.1.2 Electron Spectroscopy 532  
              15.1.3 Electron Correlations in Clusters 533  
           15.2 Transition Metal Oxides 535  
              15.2.1 Spin-Charge Separation 535  
                 Doped Cuprates and Manganites 537  
                 Electronic Characteristics 537  
                 Phase Separation 538  
              15.2.2 BCS Versus High Tc Superconductivity 540  
              15.2.3 Localized Versus Itinerant Behavior 542  
           15.3 Scanning Tunneling Experiments 543  
              15.3.1 Pseudogap and Gap 543  
              15.3.2 Two Energy (Temperature) Scales 545  
              15.3.3 Coherent Versus Incoherent Condensation 546  
              15.3.4 Modulated Pairs in Cuprates 548  
              15.3.5 Inhomogeneities 548  
           15.4 Bethe-Ansatz and GSCF Theories 550  
           15.5 Hubbard Model 551  
              15.5.1 GSCF Decoupling Scheme 551  
              15.5.2 Canonical Transformation 553  
              15.5.3 Order Parameter q(+) 554  
              15.5.4 Quasi-Particle Spectrum 556  
              15.5.5 Chemical Potential 557  
              15.5.6 Ground State Phase Diagram 559  
              15.5.7 GSCF Phase Diagram at T=0 561  
           15.6 Bottom up Approach 562  
              15.6.1 The Cluster Formalism 564  
           15.7 General Methodology 564  
              15.7.1 The Canonical Charge and Spin Gaps 565  
              15.7.2 Quantum Critical Points: Level Crossings 567  
              15.7.3 Symmetry Breaking 568  
              15.7.4 The Charge and Spin Instabilities 570  
              15.7.5 The Charge and Spin Susceptibility Peaks 572  
              15.7.6 Charge and Spin Inhomogeneities 573  
              15.7.7 The Coherent Charge and Spin Pairings 575  
           15.8 Ground State Properties 576  
              15.8.1 Bipartite Clusters 576  
              15.8.2 Tetrahedrons 578  
              15.8.3 Square Pyramids 581  
           15.9 Phase T- Diagram 582  
              15.9.1 Tetrahedrons at t=1 582  
           15.10 Conclusion 585  
           References 587  
        16 Mechanical Properties of One-Dimensional Nanostructures 593  
           16.1 Introduction 593  
           16.2 Mechanical Property Measurements of One-Dimensional Nanostructures 594  
              16.2.1 Electric Field-Induced Mechanical Resonance of One-Dimensional Nanostructures 595  
              16.2.2 Axial Tensile Loading of One-Dimensional Nanostructures 596  
              16.2.3 Three-Point Bending Test of Bridge-Suspended One-Dimensional Nanostructures 597  
              16.2.4 Beam-Bending of One-End-Clamped One-Dimensional Nanostructures 598  
              16.2.5 Instrumented Indentation of One-Dimensional Nanostructures 599  
              16.2.6 Contact Modulation AFM-Based Techniques 600  
           16.3 Contact-Resonance Atomic Force Microscopy 601  
              16.3.1 Cantilever Dynamics in CR-AFM 602  
              16.3.2 Contact Mechanics in CR-AFM 605  
              16.3.3 Precision and Accuracy in CR-AFM Measurements (Dual-Reference Calibration Method for CR-AFM) 607  
           16.4 Contact-Resonance Atomic Force Microscopy Applied to Elastic Modulus Measurements of 1D Nanostructures 609  
              16.4.1 Normal Contact Stiffness of the Tip–Nanowire Contact 610  
              16.4.2 Lateral Contact Stiffness of the Tip–Nanowire Contact 611  
           16.5 Elastic Moduli of ZnO and Te Nanowires Measured by CR-AFM 612  
              16.5.1 CR-AFM Measurements on ZnO Nanowires 612  
              16.5.2 CR-AFM Measurements on Te Nanowires 618  
           16.6 Surface Effects on the Mechanical Properties of 1D Nanostructures 623  
           16.7 How Important Are the Mechanical Propertiesof 1D Nanostructures in Applications? 626  
           References 627  
        17 Colossal Permittivity in Advanced Functional Heterogeneous Materials: The Relevanceof the Local Measurements at Submicron Scale 634  
           17.1 Introduction 635  
           17.2 Physical Properties of Heterogeneous Materials 637  
              17.2.1 Theory of the Dielectric Relaxation: Basic Principles 637  
                 Mobile Charge Carrier Contribution 638  
              17.2.2 Separation of Charges: Maxwell/Wagner/Sillars Polarization 640  
                 Mesoscopic Scale: Separation of ChargesMaxwell/Wagner/Sillars (MW) Polarization 640  
                 Macroscopic Scale: Electrode Polarization 641  
              17.2.3 Ultimate Theories on the Dielectric Relaxation 642  
                 The Presence of Inner Schottky Barriers 644  
                 Intrinsic and Extrinsic Mechanisms 646  
           17.3 Conventional Macroscopic Techniques 648  
              17.3.1 Basic Principles 648  
              17.3.2 Dielectric Spectroscopy 649  
           17.4 Scanning Probe Microscopy 650  
              17.4.1 Scanning Tunnelling Microscopy on Giant- Materials 650  
              17.4.2 Kelvin Probe Force Microscopy on Giant- Materials 654  
              17.4.3 SIM on Giant- Materials 657  
                 CCTO Polycrystalline Ceramics 657  
                 CCTO Single Crystal 662  
           17.5 Summary and Conclusions 664  
           References 665  
        18 Controlling Wear on Nanoscale 668  
           18.1 Introduction 669  
           18.2 Molecular and Supra-Molecular Featuresfor Basic Wear Mechanism 672  
              18.2.1 Abrasive Wear Mechanisms for Viscoelastic Materials 687  
           18.3 Modelling Wear as an Activated Process 690  
              18.3.1 Self-assembled Monolayers as a Frame for Modelling Wear in Viscoelastic Materials 696  
           18.4 Conclusions 704  
           References 705  
        19 Contact Potential Difference Techniques as Probing Tools in Tribology and Surface Mapping 708  
           19.1 Introduction 708  
           19.2 Electron Work Function as a Parameterfor Surfaces Characterization 709  
           19.3 Measurements of Contact Potential Difference 711  
              19.3.1 Kelvin-Zisman Probe 712  
              19.3.2 Nonvibrating Probe 713  
              19.3.3 Ionization Probe 714  
              19.3.4 Atomic Force Microscope in Kelvin Mode 715  
           19.4 Typical Electron Work Function Responses 717  
              19.4.1 Surface Deformation 717  
              19.4.2 Friction 719  
              19.4.3 Experimental Examples of Kelvin Technique Application 722  
           19.5 Periodic Electron Work FunctionChanges During Friction 725  
              19.5.1 Phenomenology 725  
           19.6 Surface Mapping Examples 734  
           19.7 Closure 737  
              Acknowledgements 738  
           References 738  
     Part III Industrial Applications 742  
        20 Modern Atomic Force Microscopy and Its Application to the Study of Genome Architecture 743  
           20.1 Introduction: History of AFM Applications to Biological Macromolecules 744  
              20.1.1 Nanometer Scale Imaging of DNA–Protein Complexes 744  
              20.1.2 Visualization of Various Biological Macromolecules 745  
              20.1.3 Challenges Toward Technical Advancement 746  
           20.2 Trends in Biological AFM 747  
              20.2.1 Analyses of Biological Macromolecules in Motion 747  
              20.2.2 Measurement of Pico-Newton Mechanical Forces in Biological Systems 749  
              20.2.3 Cantilever Modification and Application to Force Measurements 750  
              20.2.4 Recognition Imaging: Integration of Force Measurements and Imaging 751  
           20.3 Eukaryotic Genome Architecture 751  
              20.3.1 Biophysical Properties of DNA and DNA-Binding Proteins 753  
              20.3.2 Fundamental Structures of Eukaryotic Genomes 755  
              20.3.3 Chromosome Structure in the Mitotic Phase 758  
              20.3.4 Chromatin Structure Inside Nuclei 758  
           20.4 Prokaryotic Genome Architecture 759  
              20.4.1 Bacterial DNA-Binding Proteins 759  
              20.4.2 Bacterial Genome Structure and Dynamics 761  
              20.4.3 Archaeal DNA-Binding Proteins, Genome Structure, and Dynamics 762  
           20.5 Conclusion/Perspectives 766  
           References 766  
        21 Near-Field Optical Litography 777  
           21.1 Introduction 778  
           21.2 Lithography: Principles and Materials 778  
              21.2.1 Photolitography 780  
              21.2.2 Electron Beam Lithography 782  
              21.2.3 Ion Beam Lithography 783  
              21.2.4 Materials 784  
           21.3 Scanning Near-Field Optical Microscopy and Lithography 787  
              21.3.1 Aperture and Apertureless SNOM Lithography 791  
              21.3.2 Near-Field Optical Lithography Achievements on Azo – Polymers 801  
           21.4 Conclusions 808  
           References 808  
        22 A New AFM-Based Lithography Method: Thermochemical Nanolithography 814  
           22.1 Introduction 815  
           22.2 Thermochemical Nanolithography 816  
           22.3 Thermal Unmasking of Chemical Groups on a Polymer 818  
              22.3.1 Unmasking Carboxylic Acid Groups 818  
              22.3.2 Unmasking Amines Groups 821  
           22.4 Two-Step Wettability Modification 821  
           22.5 Covalent Functionalization and Molecular Recognition 824  
           References 828  
        23 Scanning Probe Alloying Nanolithography 831  
           23.1 Brief Review of Nanolithography 831  
              23.1.1 Introduction 831  
              23.1.2 Probe-Based Lithography 833  
              23.1.3 Probe Materials and Properties 834  
              23.1.4 Probe Wear 835  
           23.2 Nanoalloying and Nanocrystallization 837  
              23.2.1 Background 837  
              23.2.2 Synthesis of Nanoalloys 837  
           23.3 Probe-Based Nanoalloying and Nanocrystalizations 838  
              23.3.1 Background 838  
              23.3.2 Scanning Probe-Based Alloying Nanolithography 839  
                 AFM Functionality as a Processing Tool 839  
                 Basic AFM Setup for Nanoprocessing 840  
                 Interfacial Interactions Between Tip and Substrate 840  
                 Mechanical Sliding 840  
                 Morphology of AFM Tips 841  
                 Chemical Analysis 842  
                 Morphological Analysis of ``Wear'' Tracks 843  
           References 845  
        24 Structuring the Surface of Crystallizable Polymers with an AFM Tip 851  
           24.1 Introduction 851  
           24.2 Experimental Part 854  
              24.2.1 Characteristics of the Polymers Used 854  
              24.2.2 Sample Preparation 855  
              24.2.3 The Employed AFM Working Mode 855  
           24.3 Melting of Confined, Nanometer-Sized Polymer Crystals 859  
              24.3.1 Self-Assembly and Non-Periodic Patterns 859  
              24.3.2 The AFM Set-Up Employed for Local Heating 861  
              24.3.3 Local Melting of Confined Polymer Crystals 861  
           24.4 Lowering the Crystal Nucleation Barrier by Deforming Polymer Chains 874  
              24.4.1 Stretched Chains Resulting from Friction Transfer 874  
              24.4.2 Stretched Chains Resulting from Rubbing with an AFM Tip 877  
           24.5 Conclusions: Controlling Polymer Properties at a Molecular Scale 880  
           References 881  
        25 Application of Contact Mode AFM to ManufacturingProcesses 885  
           25.1 Introduction 885  
           25.2 Review of Atomic Force Microscope Capabilities Relevant to Manufacturing 887  
              25.2.1 Evaluation of Mechanical Properties 887  
                 Hardness Testing 887  
                 Scratch Testing 892  
                 Wear Testing 896  
              25.2.2 Friction/Lubricant Evaluation 900  
                 Review of Lubrication Fundamentals 900  
                 Friction Force Microscopy 903  
           25.3 Applications to Metal Forming 904  
              25.3.1 Evaluation of Lubricants 904  
              25.3.2 Bulk and Sheet Forming 905  
              25.3.3 Powder Processing 912  
           25.4 Abrasive Machining Processes 914  
              25.4.1 Grinding and Polishing 914  
              25.4.2 Chemical Mechanical Polishing 915  
              25.4.3 Miscellaneous Applications 919  
                 Nanolithography 919  
           25.5 Polymer Processing 920  
           25.6 Conclusions 922  
           References 923  
        26 Scanning Probe Microscopy as a Tool Applied to Agriculture 933  
           26.1 Applications of Nanotechnology in Agriculture 933  
           26.2 Applications of AFM in Agriculture 934  
              26.2.1 Introduction 934  
              26.2.2 Some Examples and Results of Agricultural Research 934  
                 Nanostructured Films 934  
                 Structures Containing Nanoparticles and Nanofibers 940  
                 Sensors and Biosensors 941  
                 Direct Measurement of Interaction Forces 945  
                 Natural Fibers and Soil Science 950  
                 Other Applications 954  
           26.3 Conclusions and Perspectives 958  
           References 958  
     Index 963  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz