Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Springer Handbook of Metrology and Testing
  Großes Bild
 
Springer Handbook of Metrology and Testing
von: Horst Czichos, Tetsuya Saito, Leslie E. Smith
Springer-Verlag, 2011
ISBN: 9783642166419
1500 Seiten, Download: 71980 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Title Pages 2  
  Preface 6  
  List of Authors 8  
  Contents 18  
  List of Abbreviations 24  
  A Fundamentals of Metrology and Testing 32  
     1 Introduction to Metrology and Testing 33  
        1.1 Methodologies of Measurement and Testing 33  
           1.1.1 Measurement 33  
           1.1.2 Testing 35  
           1.1.3 Conformity Assessment and Accreditation 37  
        1.2 Overview of Metrology 39  
           1.2.1 The Meter Convention 39  
           1.2.2 Categories of Metrology 39  
           1.2.3 Metrological Units 41  
           1.2.4 Measurement Standards 42  
        1.3 Fundamentals of Materials Characterization 43  
           1.3.1 Nature of Materials 43  
           1.3.2 Types of Materials 45  
           1.3.3 Scale of Materials 46  
           1.3.4 Properties of Materials 47  
           1.3.5 Performance of Materials 49  
           1.3.6 Metrology of Materials 50  
        References 52  
     2 Metrology Principles and Organization 53  
        2.1 The Roots and Evolution of Metrology 53  
        2.2 BIPM: The Birth of the Metre Convention 55  
        2.3 BIPM: The First 75 Years 56  
        2.4 Quantum Standards: A Metrological Revolution 58  
        2.5 Regional Metrology Organizations 59  
        2.6 Metrological Traceability 59  
        2.7 Mutual Recognition of NMI Standards: The CIPM MRA 60  
           2.7.1 The Essential Points of the MRA 60  
           2.7.2 The Key Comparison Database (KCDB) 61  
           2.7.3 Take Up of the CIPM MRA 61  
        2.8 Metrology in the 21st Century 62  
           2.8.1 Industrial Challenges 62  
           2.8.2 Chemistry, Pharmacy, and Medicine 63  
           2.8.3 Environment, Public Services, and Infrastructures 64  
        2.9 The SI System and New Science 64  
        References 67  
     3 Quality in Measurement and Testing 68  
        3.1 Sampling 69  
           3.1.1 Quality of Sampling 69  
           3.1.2 Judging Whether Strategies of Measurement and Sampling Are Appropriate 71  
           3.1.3 Options for the Design of Sampling 72  
        3.2 Traceability of Measurements 74  
           3.2.1 Introduction 74  
           3.2.2 Terminology 75  
           3.2.3 Traceability of Measurement Results to SI Units 75  
           3.2.4 Calibration of Measuring and Testing Devices 77  
           3.2.5 The Increasing Importance of Metrological Traceability 78  
        3.3 Statistical Evaluation of Results 79  
           3.3.1 Fundamental Concepts 79  
           3.3.2 Calculations and Software 82  
           3.3.3 Statistical Methods 83  
           3.3.4 Statistics for Quality Control 95  
        3.4 Uncertainty and Accuracy of Measurement and Testing 97  
           3.4.1 General Principles 97  
           3.4.2 Practical Example: Accuracy Classes of Measuring Instruments 98  
           3.4.3 Multiple Measurement Uncertainty Components 100  
           3.4.4 Typical Measurement Uncertainty Sources 101  
           3.4.5 Random and Systematic Effects 102  
           3.4.6 Parameters Relating to Measurement Uncertainty: Accuracy, Trueness, and Precision 102  
           3.4.7 Uncertainty Evaluation: Interlaboratory and Intralaboratory Approaches 104  
        3.5 Validation 107  
           3.5.1 Definition and Purpose of Validation 107  
           3.5.2 Validation, Uncertainty of Measurement, Traceability, and Comparability 108  
           3.5.3 Practice of Validation 110  
        3.6 Interlaboratory Comparisons and Proficiency Testing 116  
           3.6.1 The Benefit of Participation in PTs 117  
           3.6.2 Selection of Providers and Sources of Information 117  
           3.6.3 Evaluation of the Results 121  
           3.6.4 Influence of Test Methods Used 122  
           3.6.5 Setting Criteria 123  
           3.6.6 Trends 123  
           3.6.7 What Can Cause Unsatisfactory Performance in a PT or ILC? 124  
           3.6.8 Investigation of Unsatisfactory Performance 124  
           3.6.9 Corrective Actions 125  
           3.6.10 Conclusions 126  
        3.7 Reference Materials 126  
           3.7.1 Introduction and Definitions 126  
           3.7.2 Classification 127  
           3.7.3 Sources of Information 128  
           3.7.4 Production and Distribution 129  
           3.7.5 Selection and Use 130  
           3.7.6 Activities of International Organizations 133  
           3.7.7 The Development of RM Activities and Application Examples 134  
           3.7.8 Reference Materials for Mechanical Testing, General Aspects 136  
           3.7.9 Reference Materials for Hardness Testing 138  
           3.7.10 Reference Materials for Impact Testing 139  
           3.7.11 Reference Materials for Tensile Testing 143  
        3.8 Reference Procedures 145  
           3.8.1 Framework: Traceability and Reference Values 145  
           3.8.2 Terminology: Concepts and Definitions 147  
           3.8.3 Requirements: Measurement Uncertainty, Traceability, and Acceptance 148  
           3.8.4 Applications for Reference and Routine Laboratories 150  
           3.8.5 Presentation: Template for Reference Procedures 152  
           3.8.6 International Networks: CIPM and VAMAS 152  
           3.8.7 Related Terms and Definitions 155  
        3.9 Laboratory Accreditation and Peer Assessment 155  
           3.9.1 Accreditation of Conformity Assessment Bodies 155  
           3.9.2 Measurement Competence: Assessment and Confirmation 156  
           3.9.3 Peer Assessment Schemes 159  
           3.9.4 Certification or Registration of Laboratories 159  
        3.10 International Standards and Global Trade 159  
           3.10.1 International Standards and International Trade: The Example of Europe 160  
           3.10.2 Conformity Assessment 162  
        3.11 Human Aspects in a Laboratory 163  
           3.11.1 Processes to Enhance Competence - Understanding Processes 163  
           3.11.2 The Principle of Controlled Input and Output 164  
           3.11.3 The Five Major Elements for Consideration in a Laboratory 165  
           3.11.4 Internal Audits 165  
           3.11.5 Conflicts 166  
           3.11.6 Conclusions 166  
        3.12 Further Reading: Books and Guides 167  
        References 167  
  B Chemical and Microstructural Analysis 171  
     4 Analytical Chemistry 172  
        4.1 Bulk Chemical Characterization 172  
           4.1.1 Mass Spectrometry 172  
           4.1.2 Molecular Spectrometry 174  
           4.1.3 Atomic Spectrometry 183  
           4.1.4 Nuclear Analytical Methods 188  
           4.1.5 Chromatographic Methods 195  
           4.1.6 Classical Chemical Methods 200  
        4.2 Microanalytical Chemical Characterization 206  
           4.2.1 Analytical Electron Microscopy (AEM) 206  
           4.2.2 Electron Probe X-ray Microanalysis 207  
           4.2.3 Scanning Auger Electron Microscopy 210  
           4.2.4 Environmental Scanning Electron Microscope 212  
           4.2.5 Infrared and Raman Microanalysis 213  
        4.3 Inorganic Analytical Chemistry: Short Surveys of Analytical Bulk Methods 216  
           4.3.1 Inorganic Mass Spectrometry 217  
           4.3.2 Optical Atomic Spectrometry 219  
           4.3.3 X-ray Fluorescence Spectrometry (XRF) 219  
           4.3.4 Neutron Activation Analysis (NAA) and Photon Activation Analysis (PAA) 221  
        4.4 Compound and Molecular Specific Analysis: Short Surveys of Analytical Methods 222  
        4.5 National Primary Standards - An Example to Establish Metrological Traceability in Elemental Analysis 225  
        References 226  
     5 Nanoscopic Architecture and Microstructure 231  
        5.1 Fundamentals 237  
           5.1.1 Diffraction and Scattering Methods 237  
           5.1.2 {Microscopy and Topography} 241  
           5.1.3 Spectroscopy 252  
        5.2 Crystalline and Amorphous Structure Analysis 258  
           5.2.1 Long-Range Order Analysis 258  
           5.2.2 Medium-Range Order Analysis 261  
           5.2.3 Short-Range Order Analysis 263  
        5.3 Lattice Defects and Impurities Analysis 265  
           5.3.1 Point Defects and Impurities 266  
           5.3.2 Extended Defects 278  
        5.4 Molecular Architecture Analysis 284  
           5.4.1 Structural Determination by X-Ray Diffraction 284  
           5.4.2 Nuclear Magnetic Resonance (NMR) Analysis 285  
           5.4.3 Chemophysical Analysis 293  
        5.5 Texture, Phase Distributions, and Finite Structures Analysis 295  
           5.5.1 Texture Analysis 295  
           5.5.2 Microanalysis of Elements and Phases 297  
           5.5.3 Diffraction Analysis of Fine Structures 299  
           5.5.4 Quantitative Stereology 300  
        References 303  
     6 Surface and Interface Characterization 306  
        6.1 Surface Chemical Analysis 307  
           6.1.1 Auger Electron Spectroscopy (AES) 310  
           6.1.2 X-ray Photoelectron Spectroscopy (XPS) 319  
           6.1.3 Secondary Ion Mass Spectrometry (SIMS) 323  
           6.1.4 Conclusions 332  
        6.2 Surface Topography Analysis 333  
           6.2.1 Stylus Profilometry 337  
           6.2.2 Optical Techniques 341  
           6.2.3 Scanning Probe Microscopy 343  
           6.2.4 Scanning Electron Microscopy 345  
           6.2.5 Parametric Methods 346  
           6.2.6 Applications and Limitations of Surface Measurement 347  
           6.2.7 Traceability 347  
           6.2.8 Summary 350  
        References 351  
  C Materials Properties Measurement 361  
     7 Mechanical Properties 362  
        7.1 Elasticity 363  
           7.1.1 Development of Elasticity Theory 363  
           7.1.2 Definition of Stress and Strain, and Relationships Between Them 364  
           7.1.3 Measurement of Elastic Constants in Static Experiments 367  
           7.1.4 Dynamic Methods of Determining Elastic Constants 372  
           7.1.5 Instrumented Indentation as a Method of Determining Elastic Constants 375  
        7.2 Plasticity 378  
           7.2.1 Fundamentals of Plasticity 378  
           7.2.2 Mechanical Loading Modes Causing Plastic Deformation 380  
           7.2.3 Standard Methods of Measuring Plastic Properties 381  
           7.2.4 Novel Test Developments for Plasticity 388  
        7.3 Hardness 389  
           7.3.1 Conventional Hardness Test Methods (Brinell, Rockwell, Vickers and Knoop) 391  
           7.3.2 Selecting a Conventional Hardness Test Method and Hardness Scale 397  
           7.3.3 Measurement Uncertainty in Hardness Testing (HR, HBW, HV, HK) 399  
           7.3.4 Instrumented Indentation Test (IIT) 401  
        7.4 Strength 411  
           7.4.1 Quasistatic Loading 412  
           7.4.2 Dynamic Loading 421  
           7.4.3 Temperature and Strain-Rate Effects 424  
           7.4.4 Strengthening Mechanisms for Crystalline Materials 425  
           7.4.5 Environmental Effects 427  
           7.4.6 Interface Strength: Adhesion Measurement Methods 428  
        7.5 Fracture Mechanics 431  
           7.5.1 Fundamentals of Fracture Mechanics 431  
           7.5.2 Fracture Toughness 433  
           7.5.3 Fatigue Crack Propagation Rate 442  
           7.5.4 Fractography 447  
        7.6 Permeation and Diffusion 449  
           7.6.1 Gas Transport: Steady-State Permeation 450  
           7.6.2 Kinetic Measurement 452  
           7.6.3 Experimental Measurement of Permeability 454  
           7.6.4 Gas Flux Measurement 456  
           7.6.5 Experimental Measurement of Gas and Vapor Sorption 459  
           7.6.6 Method Evaluations 463  
           7.6.7 Future Projections 465  
        References 465  
     8 Thermal Properties 476  
        8.1 Thermal Conductivity and Specific Heat Capacity 477  
           8.1.1 Steady-State Methods 479  
           8.1.2 Transient Methods 481  
           8.1.3 Calorimetric Methods 484  
        8.2 Enthalpy of Phase Transition, Adsorption and Mixing 485  
           8.2.1 Adiabatic Calorimetry 487  
           8.2.2 Differential Scanning Calorimetry 488  
           8.2.3 Drop Calorimetry 489  
           8.2.4 Solution Calorimetry 490  
           8.2.5 Combustion Calorimetry 491  
        8.3 Thermal Expansion and Thermomechanical Analysis 492  
           8.3.1 Optical Methods 492  
           8.3.2 Push Rod Dilatometry 493  
           8.3.3 Thermomechanical Analysis 493  
        8.4 Thermogravimetry 494  
        8.5 Temperature Sensors 494  
           8.5.1 Temperature and Temperature Scale 494  
           8.5.2 Use of Thermometers 497  
           8.5.3 Resistance Thermometers 498  
           8.5.4 Liquid-in-Glass Thermometers 500  
           8.5.5 Thermocouples 501  
           8.5.6 Radiation Thermometers 502  
           8.5.7 Cryogenic Temperature Sensors 503  
        References 505  
     9 Electrical Properties 507  
        9.1 Electrical Materials 508  
           9.1.1 Conductivity and Resistivity of Metals 508  
           9.1.2 Superconductivity 509  
           9.1.3 Semiconductors 510  
           9.1.4 Conduction in Polymers 512  
           9.1.5 Ionic Conductors 512  
           9.1.6 Dielectricity 513  
           9.1.7 Ferroelectricity and Piezoelectricity 514  
        9.2 Electrical Conductivity of Metallic Materials 515  
           9.2.1 Scale of Electrical Conductivity 515  
           9.2.2 Principal Methods 516  
           9.2.3 DC Conductivity, Calibration of Reference Materials 518  
           9.2.4 AC Conductivity, Calibration of Reference Materials 518  
           9.2.5 Superconductivity 519  
        9.3 Electrolytic Conductivity 520  
           9.3.1 Scale of Conductivity 520  
           9.3.2 Basic Principles 521  
           9.3.3 The Measurement of the Electrolytic Conductivity 523  
        9.4 Semiconductors 529  
           9.4.1 Conductivity Measurements 529  
           9.4.2 Mobility Measurements 532  
           9.4.3 Dopant and Carrier Concentration Measurements 535  
           9.4.4 I-V Breakdown Mechanisms 540  
           9.4.5 Deep Level Characterization and Minority Carrier Lifetime 541  
           9.4.6 Contact Resistances of Metal-Semiconductor Contacts 545  
        9.5 Measurement of Dielectric Materials Properties 548  
           9.5.1 Dielectric Permittivity 549  
           9.5.2 Measurement of Permittivity 551  
           9.5.3 Measurement of Permittivity Using Microwave Network Analysis 554  
           9.5.4 Uncertainty Considerations 558  
           9.5.5 Conclusion 559  
        References 559  
     10 Magnetic Properties 563  
        10.1 Magnetic Materials 564  
           10.1.1 Diamagnetism, Paramagnetism, and Ferromagnetism 564  
           10.1.2 Antiferromagnetism, Ferrimagnetism and Noncollinear Magnetism 565  
           10.1.3 Intrinsic and Extrinsic Properties 566  
           10.1.4 Bulk Soft and Hard Materials 566  
           10.1.5 Magnetic Thin Films 566  
           10.1.6 Time-Dependent Changes in Magnetic Properties 567  
           10.1.7 Definition of Magnetic Properties and Respective Measurement Methods 567  
        10.2 Soft and Hard Magnetic Materials: (Standard) Measurement Techniques for Properties Related to the B(H) Loop 568  
           10.2.1 Introduction 568  
           10.2.2 Properties of Hard Magnetic Materials 571  
           10.2.3 Properties of Soft Magnetic Materials 577  
        10.3 Magnetic Characterization in a Pulsed Field Magnetometer (PFM) 589  
           10.3.1 Industrial Pulsed Field Magnetometer 590  
           10.3.2 Errors in a PFM 591  
           10.3.3 Calibration 595  
           10.3.4 Hysteresis Measurements on Hard Magnetic Materials 597  
           10.3.5 Anisotropy Measurement 598  
           10.3.6 Summary: Advantages and Disadvantages of PFM 601  
        10.4 Properties of Magnetic Thin Films 601  
           10.4.1 Saturation Magnetization, Spontaneous Magnetization 601  
           10.4.2 Magneto-Resistive Effects 605  
        References 607  
     11 Optical Properties 609  
        11.1 Fundamentals of Optical Spectroscopy 610  
           11.1.1 Light Source 610  
           11.1.2 Photosensors 612  
           11.1.3 Wavelength Selection 614  
           11.1.4 Reflection and Absorption 616  
           11.1.5 Luminescence and Lasers 620  
           11.1.6 Scattering 624  
        11.2 Microspectroscopy 627  
           11.2.1 Optical Microscopy 627  
           11.2.2 Near-field Optical Microscopy 628  
           11.2.3 Cathodoluminescence (SEM-CL) 629  
        11.3 Magnetooptical Measurement 631  
           11.3.1 Faraday and Kerr Effects 631  
           11.3.2 Application to Magnetic Flux Imaging 632  
        11.4 Nonlinear Optics and Ultrashort Pulsed Laser Application 636  
           11.4.1 Nonlinear Susceptibility 636  
           11.4.2 Ultrafast Pulsed Laser 640  
           11.4.3 Time-Resolved Spectroscopy 642  
           11.4.4 Nonlinear Spectroscopy 645  
           11.4.5 Terahertz Time-Domain Spectroscopy 647  
        11.5 Fiber Optics 648  
           11.5.1 Fiber Dispersion and Attenuation 649  
           11.5.2 Nonlinear Optical Properties 652  
           11.5.3 Fiber Bragg Grating 654  
           11.5.4 Fiber Amplifiers and Lasers 657  
           11.5.5 Miscellaneous Fibers 660  
        11.6 Evaluation Technologies for Optical Disk Memory Materials 663  
           11.6.1 Evaluation Technologies for Phase-Change Materials 663  
           11.6.2 Evaluation Technologies for MO Materials 669  
        11.7 Optical Sensing 671  
           11.7.1 Distance Measurement 671  
           11.7.2 Displacement Measurement 673  
           11.7.3 3-D Shape Measurement 673  
           11.7.4 Flow Measurement 674  
           11.7.5 Temperature Measurement 675  
           11.7.6 Optical Sensing for the Human Body 677  
        References 678  
  D Materials Performance Testing 686  
     12 Corrosion 687  
        12.1 Background 688  
           12.1.1 Classification of Corrosion 689  
           12.1.2 Corrosion Testing 690  
        12.2 Conventional Electrochemical Test Methods 691  
           12.2.1 Principles of Electrochemical Measurements and Definitions 691  
           12.2.2 Some Definitions 693  
           12.2.3 Electrochemical Thermodynamics 694  
           12.2.4 Complex Formation 696  
           12.2.5 Electrochemical Kinetics 696  
           12.2.6 The Charge-Transfer Overvoltage 696  
           12.2.7 Elementary Reaction Steps in Sequence,the Hydrogen Evolution Reaction 699  
           12.2.8 Two Different Reactions at One Electrode Surface 701  
           12.2.9 Local Elements 703  
           12.2.10 Diffusion Control of Electrode Processes 704  
           12.2.11 Rotating Disc Electrode (RDE) and Rotating Ring-Disc Electrode (RRDE) 706  
           12.2.12 Ohmic Drops 709  
           12.2.13 Measurement of Ohmic Drops and Potential Profiles Within Electrolytes 710  
           12.2.14 Nonstationary Methods, Pulse Measurements 712  
           12.2.15 Concluding Remarks 715  
        12.3 Novel Electrochemical Test Methods 715  
           12.3.1 Electrochemical Noise Analysis 715  
        12.4 Exposure and On-Site Testing 719  
        12.5 Corrosion Without Mechanical Loading 719  
           12.5.1 Uniform Corrosion 720  
           12.5.2 Nonuniform and Localized Corrosion 721  
        12.6 Corrosion with Mechanical Loading 725  
           12.6.1 Stress Corrosion 726  
           12.6.2 Corrosion Fatigue 729  
        12.7 Hydrogen-Induced Stress Corrosion Cracking 734  
           12.7.1 Electrochemical Processes 735  
           12.7.2 Theories of H-Induced Stress Corrosion Cracking 736  
           12.7.3 Environment and Material Parameters 737  
           12.7.4 Fractographic and Mechanical Effects of HISCC 737  
           12.7.5 Test Methods 738  
        12.8 High-Temperature Corrosion 738  
           12.8.1 Main Parameters in High-Temperature Corrosion 738  
           12.8.2 Test Standards or Guidelines 739  
           12.8.3 Mass Change Measurements 741  
           12.8.4 Special High-Temperature Corrosion Tests 749  
           12.8.5 Post-Test Evaluation of Test Pieces 751  
           12.8.6 Concluding Remarks 752  
        12.9 Inhibitor Testing and Monitoring of Efficiency 752  
           12.9.1 Investigation and Testing of Inhibitors 753  
           12.9.2 Monitoring of Inhibitor Efficiency 754  
           12.9.3 Monitoring Inhibition from Corrosion Rates 756  
        References 758  
     13 Friction and Wear 762  
        13.1 Definitions and Units 762  
           13.1.1 Definitions 763  
           13.1.2 Types of Wear 763  
           13.1.3 Units for Wear 764  
        13.2 Selection of Friction and Wear Tests 766  
           13.2.1 Approach to Tribological Testing 766  
           13.2.2 Test Parameters 767  
           13.2.3 Interaction with Other Degradation Mechanisms 769  
           13.2.4 Experimental Planning and Presentation of Results 769  
        13.3 Tribological Test Methods 770  
           13.3.1 Sliding Motion 770  
           13.3.2 Rolling Motion 770  
           13.3.3 Abrasion 771  
           13.3.4 Erosion by Solid Particles 772  
           13.3.5 Scratch Testing 772  
        13.4 Friction Measurement 773  
           13.4.1 Friction Force Measurement 773  
           13.4.2 Strain Gauge Load Cells and Instrumentation 773  
           13.4.3 Piezoelectric Load Sensors 774  
           13.4.4 Other Force Transducers 774  
           13.4.5 Sampling and Digitization Errors 775  
           13.4.6 Calibration 775  
           13.4.7 Presentation of Results 777  
        13.5 Quantitative Assessment of Wear 778  
           13.5.1 Direct and Indirect Quantities 778  
           13.5.2 Mass Loss 778  
           13.5.3 Dimensional Change 778  
           13.5.4 Volume Loss 779  
           13.5.5 Other Methods 781  
           13.5.6 Errors and Reproducibility in Wear Testing 781  
        13.6 Characterization of Surfaces and Debris 783  
           13.6.1 Sample Preparation 783  
           13.6.2 Microscopy, Profilometry and Microanalysis 784  
           13.6.3 Wear Debris Analysis 786  
        References 786  
     14 Biogenic Impact on Materials 788  
        14.1 Modes of Materials - Organisms Interactions 789  
           14.1.1 Biodeterioration/Biocorrosion 789  
           14.1.2 Biodegradation 790  
           14.1.3 Summary 790  
           14.1.4 Role of Biocides 790  
        14.2 Biological Testing of Wood 793  
           14.2.1 Attack by Microorganisms 795  
           14.2.2 Attack by Insects 800  
        14.3 Testing of Organic Materials 808  
           14.3.1 Biodeterioration 808  
           14.3.2 Biodegradation 810  
           14.3.3 Paper and Textiles 822  
        14.4 Biological Testing of Inorganic Materials 830  
           14.4.1 Inorganic Materials Subject to Biological Attack 830  
           14.4.2 The Mechanisms of Biological Attack on Inorganic Materials 832  
           14.4.3 Organisms Acting on Inorganic Materials 833  
           14.4.4 Biogenic Impact on Rocks 837  
           14.4.5 Biogenic Impact on Metals, Glass, Pigments 842  
           14.4.6 Control and Prevention of Biodeterioration 843  
        14.5 Coatings and Coating Materials 845  
           14.5.1 Susceptibility of Coated Surfaces to Fungal and Algal Growth 845  
        14.6 Reference Organisms 852  
           14.6.1 Chemical and Physiological Characterization 852  
           14.6.2 Genomic Characterization 853  
        References 857  
     15 Material-Environment Interactions 864  
        15.1 Materials and the Environment 864  
           15.1.1 Environmental Impact of Materials 864  
           15.1.2 Environmental Impact on Polymeric Materials 867  
        15.2 Emissions from Materials 879  
           15.2.1 General 879  
           15.2.2 Types of Emissions 879  
           15.2.3 Influences on the Emission Behavior 880  
           15.2.4 Emission Test Chambers 881  
           15.2.5 Air Sampling from Emission Test Chambers 882  
           15.2.6 Identification and Quantification of Emissions 883  
           15.2.7 Time Behavior and Ageing 885  
           15.2.8 Secondary Emissions 888  
        15.3 Fire Physics and Chemistry 888  
           15.3.1 Ignition 888  
           15.3.2 Combustion 892  
           15.3.3 Fire Temperatures 894  
           15.3.4 Materials Subject to Fire 896  
           15.3.5 Fire Testing and Fire Regulations 897  
        References 902  
     16 Performance Control: Nondestructive Testing and Reliability Evaluation 906  
        16.1 Nondestructive Evaluation 907  
           16.1.1 Visual Inspection 907  
           16.1.2 Ultrasonic Examination: Physical Background 908  
           16.1.3 Application Areas of Ultrasonic Examination 913  
           16.1.4 Magnetic Particle Inspection 916  
           16.1.5 Liquid Penetrant Inspection 917  
           16.1.6 Eddy-Current Testing 918  
        16.2 Industrial Radiology 919  
           16.2.1 Fundamentals of Radiology 920  
           16.2.2 Particle-Based Radiological Methods 925  
           16.2.3 Film Radiography 926  
           16.2.4 Digital Radiological Methods 927  
           16.2.5 Applications of Radiology for Public Safety and Security 933  
        16.3 Computerized Tomography - Application to Organic Materials 934  
           16.3.1 Principles of X-ray Tomography 934  
           16.3.2 Detection of Macroscopic Defects in Materials 936  
           16.3.3 Detection of the Damage of Composites on the Mesoscale: Application Examples 937  
           16.3.4 Observation of Elastomers at the Nanoscale 938  
           16.3.5 Application Assessment of CT with a Medical Scanner 939  
        16.4 Computerized Tomography - Application to Inorganic Materials 940  
           16.4.1 High-Energy CT 940  
           16.4.2 High-Resolution CT 940  
           16.4.3 Synchrotron CT 941  
           16.4.4 Dimensional Control of Engine Components 942  
        16.5 Computed Tomography - Application to Composites and Microstructures 946  
           16.5.1 Refraction Effect 946  
           16.5.2 Refraction Techniques Applying X-ray Tubes 947  
           16.5.3 3-D Synchrotron Refraction Computed Tomography 948  
           16.5.4 Conclusion 951  
        16.6 Structural Health Monitoring - Embedded Sensors 951  
           16.6.1 Basics of Structural Health Monitoring 951  
           16.6.2 Fiber-Optic Sensing Techniques 954  
           16.6.3 Piezoelectric Sensing Techniques 964  
        16.7 Characterization of Reliability 968  
           16.7.1 Statistical Treatment of Reliability 970  
           16.7.2 Weibull Analysis 971  
           16.7.3 Reliability Test Strategies 975  
           16.7.4 Accelerated Lifetime Testing 978  
           16.7.5 System Reliability 981  
           16.7.6 System Reliability Estimation in Practice 983  
        16.A Appendix 986  
        References 987  
  E Modeling and Simulation Methods 992  
     17 Molecular Dynamics 993  
        17.1 Basic Idea of Molecular Dynamics 993  
           17.1.1 Time Evolution of the Equations of Motion 993  
           17.1.2 Constraints on the Simulation Systems 996  
           17.1.3 Control of Temperature and Pressure 998  
           17.1.4 Interaction Potentials 1003  
           17.1.5 Physical Observables 1005  
        17.2 Diffusionless Transformation 1006  
           17.2.1 Martensitic Transformation 1006  
           17.2.2 Transformations in Nanoclusters 1009  
           17.2.3 Solid-State Amorphization 1011  
        17.3 Rapid Solidification 1013  
           17.3.1 Glass-Formation by Liquid Quenching 1013  
           17.3.2 Annealing of Amorphous Alloys 1017  
           17.3.3 Glass-Forming Ability of Alloy Systems 1022  
        17.4 Diffusion 1024  
           17.4.1 Diffusion in Crystalline Phases 1024  
           17.4.2 Diffusion in Liquid and Glassy Phases 1026  
        17.5 Summary 1028  
        References 1028  
     18 Continuum Constitutive Modeling 1031  
        18.1 Phenomenological Viscoplasticity 1031  
           18.1.1 General Models of Viscoplasticity 1031  
           18.1.2 Inelasticity Models 1033  
           18.1.3 Model Performance 1034  
        18.2 Material Anisotropy 1036  
           18.2.1 Description of Material Anisotropy 1036  
           18.2.2 Initial Anisotropy 1037  
           18.2.3 Induced Anisotropy 1039  
        18.3 Metallothermomechanical Coupling 1041  
           18.3.1 Phase Changes 1041  
           18.3.2 Numerical Methodology 1043  
           18.3.3 Applications to Heat Treatment and Metal Forming 1043  
        18.4 Crystal Plasticity 1044  
           18.4.1 Single-Crystal Model 1044  
           18.4.2 Grain Boundary Sliding 1047  
           18.4.3 Inhomogeneous Deformation 1047  
        References 1048  
     19 Finite Element and Finite Difference Methods 1051  
        19.1 Discretized Numerical Schemes for FEM and FDM 1053  
        19.2 Basic Derivations in FEM and FDM 1055  
           19.2.1 Finite Difference Method (FDM) 1055  
           19.2.2 Finite Element Method (FEM) 1056  
        19.3 The Equivalence of FEM and FDM Methods 1059  
        19.4 From Mechanics to Mathematics: Equilibrium Equations and Partial Differential Equations 1060  
           19.4.1 Heat Conduction Problem in the Two-Dimensional Case 1061  
           19.4.2 Elastic Solid Problem in the Three-Dimensional Case 1061  
        19.5 From Mathematics to Mechanics: Characteristic of Partial Differential Equations 1065  
           19.5.1 Elliptic Type 1066  
           19.5.2 Parabolic Type 1066  
           19.5.3 Hyperbolic Type 1066  
        19.6 Time Integration for Unsteady Problems 1067  
           19.6.1 FDM 1067  
           19.6.2 FEM 1068  
        19.7 Multidimensional Case 1069  
           19.7.1 Finite Difference Method 1069  
           19.7.2 Finite Element Method 1070  
        19.8 Treatment of the Nonlinear Case 1073  
        19.9 Advanced Topics in FEM and FDM 1073  
           19.9.1 Preprocessing 1073  
           19.9.2 Postprocessing 1074  
           19.9.3 Numerical Error 1074  
           19.9.4 Relatives of FEM and FDM 1075  
           19.9.5 Matrix Calculation and Parallel Computations 1075  
           19.9.6 Multiscale Method 1077  
        19.10 Free Codes 1077  
        References 1077  
     20 The CALPHAD Method 1079  
        20.1 Outline of the CALPHAD Method 1080  
           20.1.1 Description of Gibbs Energy 1080  
           20.1.2 Equilibrium Conditions 1082  
           20.1.3 Evaluation of Thermodynamic Parameters 1083  
        20.2 Incorporation of the First-principles Calculations into the CALPHAD Approach 1084  
           20.2.1 Outline of the First-principles Calculations 1084  
           20.2.2 Gibbs Energies of Solution Phases Derived by the First-principles Calculations 1085  
           20.2.3 Thermodynamic Analysis of the Gibbs Energies Based on the First-principles Calculations 1089  
           20.2.4 Construction of Stable and Metastable Phase Diagrams 1089  
           20.2.5 Application to More Complex Cases 1091  
        20.3 Prediction of Thermodynamic Properties of Compound Phases with First-principles Calculations 1097  
           20.3.1 Thermodynamic Analysis of the Fe-Al-C System 1097  
           20.3.2 Thermodynamic Analysis of the Co-Al-C and Ni-Al-C Systems 1101  
        References 1108  
     21 Phase Field Approach 1109  
        21.1 Basic Concept of the Phase-Field Method 1110  
        21.2 Total Free Energy of Microstructure 1111  
           21.2.1 Chemical Free Energy 1111  
           21.2.2 Gradient Energy 1113  
           21.2.3 Elastic Strain Energy 1115  
           21.2.4 Free Energy for Ferromagnetic and Ferroelectric Phase Transition 1119  
        21.3 Solidification 1120  
           21.3.1 Pure Metal 1120  
           21.3.2 Alloy 1122  
        21.4 Diffusion-Controlled Phase Transformation 1123  
           21.4.1 Cahn-Hilliard Diffusion Equation 1123  
           21.4.2 Spinodal Decomposition and Ostwald Ripening 1125  
        21.5 Structural Phase Transformation 1126  
           21.5.1 Martensitic Transformation 1126  
           21.5.2 Tweed-Like Structure and Twin Domain Formations 1126  
           21.5.3 Twin Domain Growth Under External Stress and Magnetic Field 1127  
        21.6 Microstructure Evolution 1128  
           21.6.1 Grain Growth and Recrystallization 1128  
           21.6.2 Ferroelectric Domain Formation with a Dipole-Dipole Interaction 1129  
           21.6.3 Modeling Complex Nanogranular Structure Formation 1130  
           21.6.4 Dislocation Dynamics 1130  
           21.6.5 Crack Propagation 1131  
        References 1132  
     22 Monte Carlo Simulation 1134  
        22.1 Fundamentals of the Monte Carlo Method 1134  
           22.1.1 Boltzmann Weight 1135  
           22.1.2 Monte Carlo Technique 1135  
           22.1.3 Random Numbers 1136  
           22.1.4 Finite-Size Effects 1137  
           22.1.5 Nonequilibrium Relaxation Method 1138  
        22.2 Improved Algorithms 1138  
           22.2.1 Reweighting Algorithms 1138  
           22.2.2 Cluster Algorithm and Extensions 1139  
           22.2.3 Hybrid Monte Carlo Method 1140  
           22.2.4 Simulated Annealing and Extensions 1141  
           22.2.5 Replica Monte Carlo 1142  
        22.3 Quantum Monte Carlo Method 1143  
           22.3.1 Suzuki-Trotter Formalism 1143  
           22.3.2 World-Line Approach 1143  
           22.3.3 Cluster Algorithm 1144  
           22.3.4 Continuous-Time Algorithm 1145  
           22.3.5 Worm Algorithm 1146  
           22.3.6 Auxiliary Field Approach 1147  
           22.3.7 Projector Monte Carlo Method 1147  
           22.3.8 Negative-Sign Problem 1149  
           22.3.9 Other Exact Methods 1150  
        22.4 Bicritical Phenomena in O(5) Model 1150  
           22.4.1 Hamiltonian 1151  
           22.4.2 Phase Diagram 1151  
           22.4.3 Scaling Theory 1152  
        22.5 Superconductivity Vortex State 1154  
           22.5.1 Model Hamiltonian 1155  
           22.5.2 First Order Melting 1155  
           22.5.3 Continuous Melting: {protect unhbox voidb@x hbox {B}} || ab Plane 1158  
        22.6 Effects of Randomness in Vortex States 1160  
           22.6.1 Point-Like Defects 1160  
           22.6.2 Columnar Defects 1161  
        22.7 Quantum Critical Phenomena 1163  
           22.7.1 Quantum Spin Chain 1163  
           22.7.2 Mott Transition 1164  
           22.7.3 Phase Separation 1165  
        References 1166  
  Acknowledgements 1175  
  About the Authors 1176  
  Detailed Contents 1200  
  Subject Index 1217  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz