Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Materials Science of Polymers for Engineers
  Großes Bild
 
Materials Science of Polymers for Engineers
von: Tim A. Osswald, Georg Menges
Carl Hanser Fachbuchverlag, 2012
ISBN: 9781569905241
688 Seiten, Download: 84332 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: A (einfacher Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface to the First Edition 8  
  Preface to the Third Edition 10  
  1 Introduction 24  
     1.1 The 6 P’s 24  
     1.2 General Information 27  
     1.3 Identification of Polymers 34  
     1.4 Sustainability – The 6th P 36  
     References 41  
  2 Historical Background 42  
     2.1 From Natural to Synthetic Rubber 42  
     2.2 Cellulose and the $10,000 Idea 48  
     2.3 Galalith – The Milk Stone 51  
     2.4 Leo Baekeland and the Plastics Industry 52  
     2.5 Herman Mark and the American Polymer Education 55  
     2.6 Wallace Hume Carothers and Synthetic Polymers 58  
     2.7 Polyethylene – A Product of Brain and Brawn 60  
     2.8 The Super Fiber and the Woman Who Invented It 63  
     2.9 One Last Word – Plastics 65  
     References 68  
  3 Structure of Polymers 70  
     3.1 Macromolecular Structure of Polymers 70  
     3.2 Molecular Bonds and Inter-Molecular Attraction 71  
     3.3 Molecular Weight 72  
     3.4 Conformation and Configuration of Polymer Molecules 77  
     3.5 Arrangement of Polymer Molecules 80  
        3.5.1 Thermoplastic Polymers 81  
        3.5.2 Amorphous Thermoplastics 81  
        3.5.3 Semi-Crystalline Thermoplastics 83  
        3.5.4 Thermosets and Cross-Linked Elastomers 93  
     3.6 Copolymers and Polymer Blends 94  
     3.7 Polymer Additives 96  
        3.7.1 Flame Retardants 96  
        3.7.2 Stabilizers 98  
        3.7.3 Antistatic Agents 99  
        3.7.4 Fillers 99  
        3.7.5 Blowing Agents 100  
     References 103  
  4 Thermal Properties of Polymers 104  
     4.1 Material Properties 106  
        4.1.1 Thermal Conductivity 106  
        4.1.2 Specific Heat 112  
        4.1.3 Density 114  
        4.1.4 Thermal Diffusivity 117  
        4.1.5 Linear Coefficient of Thermal Expansion 118  
        4.1.6 Thermal Penetration 119  
        4.1.7 Glass Transition Temperature 120  
        4.1.8 Melting Temperature 120  
     4.2 Measuring Thermal Data 120  
        4.2.1 Differential Thermal Analysis (DTA) 121  
        4.2.2 Differential Scanning Calorimeter (DSC) 122  
        4.2.3 Thermomechanical Analysis (TMA) 124  
        4.2.4 Thermogravimetry (TGA) 125  
        4.2.5 Density Measurements 126  
     References 130  
  5 Rheology of Polymer Melts 132  
     5.1 Introduction 132  
        5.1.1 Continuum Mechanics 132  
        5.1.2 The Generalized Newtonian Fluid 134  
        5.1.3 Normal Stresses in Shear Flow 136  
        5.1.4 Deborah Number 137  
     5.2 Viscous Flow Models 140  
        5.2.1 The Power Law Model 140  
        5.2.2 The Bird-Carreau-Yasuda Model 142  
        5.2.3 The Bingham Fluid 143  
        5.2.4 Elongational Viscosity 143  
        5.2.5 Rheology of Curing Thermosets 146  
        5.2.6 Suspension Rheology 148  
     5.3 Simplified Flow Models Common in Polymer Processing 150  
        5.3.1 Simple Shear Flow 150  
        5.3.2 Pressure Flow Through a Slit 151  
        5.3.3 Pressure Flow through a Tube – Hagen-Poiseuille Flow 151  
        5.3.4 Couette Flow 152  
     5.4 Viscoelastic Flow Models 153  
        5.4.1 Differential Viscoelastic Models 153  
        5.4.2 Integral Viscoelastic Models 156  
     5.5 Rheometry 159  
        5.5.1 The Melt Flow Indexer 160  
        5.5.2 The Capillary Viscometer 160  
        5.5.3 Computing Viscosity Using the Bagley and Weissenberg-Rabinowitsch Equations 162  
        5.5.4 Viscosity Approximation Using the Representative Viscosity Method 163  
        5.5.5 The Cone-Plate Rheometer 164  
        5.5.6 The Couette Rheometer 165  
        5.5.7 Extensional Rheometry 166  
     5.6 Surface Tension 169  
     References 178  
  6 Introduction to Processing 184  
     6.1 Extrusion 184  
        6.1.1 The Plasticating Extruder 187  
           6.1.1.1 The Solids Conveying Zone 189  
           6.1.1.2 The Melting Zone 192  
           6.1.1.3 The Metering Zone 195  
        6.1.2 Extrusion Dies 196  
           6.1.2.1 Sheeting Dies 197  
           6.1.2.2 Tubular Dies 198  
     6.2 Mixing Processes 200  
        6.2.1 Distributive Mixing 202  
           6.2.1.1 Effect of Orientation 203  
        6.2.2 Dispersive Mixing 205  
           6.2.2.1 Break-Up of Particulate Agglomerates 205  
           6.2.2.2 Break-Up of Fluid Droplets 207  
        6.2.3 Mixing Devices 210  
           6.2.3.1 Static Mixers 211  
           6.2.3.2 Banbury Mixer 211  
           6.2.3.3 Mixing in Single Screw Extruders 213  
           6.2.3.4 Co-Kneader 215  
           6.2.3.5 Twin Screw Extruders 216  
        6.2.4 Energy Consumption During Mixing 219  
        6.2.5 Mixing Quality and Efficiency 220  
        6.2.6 Plasticization 222  
     6.3 Injection Molding 227  
        6.3.1 The Injection Molding Cycle 228  
        6.3.2 The Injection Molding Machine 231  
           6.3.2.1 The Plasticating and Injection Unit 231  
           6.3.2.2 The Clamping Unit 232  
           6.3.2.3 The Mold Cavity 234  
     6.4 Special Injection Molding Processes 237  
        6.4.1 Multi-Component Injection Molding 237  
        6.4.2 Co-Injection Molding 239  
        6.4.3 Gas-Assisted Injection Molding (GAIM) 240  
        6.4.4 Injection-Compression Molding 242  
        6.4.5 Reaction Injection Molding (RIM) 243  
        6.4.6 Liquid Silicone Rubber Injection Molding 246  
     6.5 Secondary Shaping 247  
        6.5.1 Fiber Spinning 247  
        6.5.2 Film Production 248  
           6.5.2.1 Cast Film Extrusion 248  
           6.5.2.2 Film Blowing 249  
        6.5.3 Blow Molding 251  
           6.5.3.1 Extrusion Blow Molding 251  
           6.5.3.2 Injection Blow Molding 253  
           6.5.3.3 Thermoforming 254  
     6.6 Calendering 256  
     6.7 Coating 259  
     6.8 Compression Molding 261  
     6.9 Foaming 263  
     6.10 Rotational Molding 265  
     6.11 Computer Simulation in Polymer Processing 266  
        6.11.1 Mold Filling Simulation 267  
        6.11.2 Orientation Predictions 269  
        6.11.3 Shrinkage and Warpage Predictions 270  
     References 281  
  7 Anisotropy Development During Processing 284  
     7.1 Orientation in the Final Part 284  
        7.1.1 Processing Thermoplastic Polymers 284  
        7.1.2 Processing Thermoset Polymers 292  
     7.2 Predicting Orientation in the Final Part 296  
        7.2.1 Planar Orientation Distribution Function 297  
        7.2.2 Single Particle Motion 299  
        7.2.3 Jeffery’s Model 300  
        7.2.4 Folgar-Tucker Model 301  
        7.2.5 Tensor Representation of Fiber Orientation 302  
           7.2.5.1 Predicting Orientation in Complex Parts Using Computer Simulation 303  
     7.3 Fiber Damage 308  
     References 314  
  8 Solidification of Polymers 316  
     8.1 Solidification of Thermoplastics 316  
        8.1.1 Thermodynamics During Cooling 316  
        8.1.2 Morphological Structure 320  
        8.1.3 Crystallization 321  
        8.1.4 Heat Transfer During Solidification 324  
     8.2 Solidification of Thermosets 328  
        8.2.1 Curing Reaction 329  
        8.2.2 Cure Kinetics 330  
        8.2.3 Heat Transfer During Cure 335  
     8.3 Residual Stresses and Warpage of Polymeric Parts 337  
        8.3.1 Residual Stress Models 340  
           8.3.1.1 Residual Stress Model Without Phase Change Effects 342  
           8.3.1.2 Model to Predict Residual Stresses with Phase Change Effects 343  
        8.3.2 Other Simple Models to Predict Residual Stresses and Warpage 345  
           8.3.2.1 Uneven Mold Temperature 347  
           8.3.2.2 Residual Stress in a Thin Thermoset Part 348  
           8.3.2.3 Anisotropy Induced Curvature Change 349  
        8.3.3 Predicting Warpage in Actual Parts 350  
     References 357  
  9 Mechanical Behavior of Polymers 362  
     9.1 Basic Concepts of Stress and Strain 362  
        9.1.1 Plane Stress 363  
        9.1.2 Plane Strain 364  
     9.2 Viscoelastic Behavior of Polymers 364  
        9.2.1 Stress Relaxation Test 365  
        9.2.2 Time-Temperature Superposition (WLF-Equation) 367  
        9.2.3 The Boltzmann Superposition Principle 368  
     9.3 Applying Linear Viscoelasticity to Describe the Behavior of Polymers 369  
        9.3.1 The Maxwell Model 370  
        9.3.2 Kelvin Model 371  
        9.3.3 Jeffrey Model 373  
        9.3.4 Standard Linear Solid Model 375  
        9.3.5 The Generalized Maxwell Model 377  
     9.4 The Short-Term Tensile Test 382  
        9.4.1 Rubber Elasticity 383  
        9.4.2 The Tensile Test and Thermoplastic Polymers 388  
     9.5 Creep Test 395  
        9.5.1 Isochronous and Isometric Creep Plots 399  
     9.6 Dynamic Mechanical Tests 400  
        9.6.1 Torsion Pendulum 400  
        9.6.2 Sinusoidal Oscillatory Test 404  
     9.7 Effects of Structure and Composition on Mechanical Properties 406  
        9.7.1 Amorphous Thermoplastics 406  
        9.7.2 Semi-Crystalline Thermoplastics 409  
        9.7.3 Oriented Thermoplastics 411  
        9.7.4 Crosslinked Polymers 416  
     9.8 Mechanical Behavior of Filled and Reinforced Polymers 418  
        9.8.1 Anisotropic Strain-Stress Relation 420  
        9.8.2 Aligned Fiber Reinforced Composite Laminates 421  
        9.8.3 Transformation of Fiber Reinforced Composite Laminate Properties 423  
        9.8.4 Reinforced Composite Laminates with a Fiber Orientation Distribution Function 425  
     9.9 Strength Stability Under Heat 426  
     References 442  
  10 Failure and Damage of Polymers 444  
     10.1 Fracture Mechanics 444  
        10.1.1 Fracture Predictions Based on the Stress Intensity Factor 445  
        10.1.2 Fracture Predictions Based on an Energy Balance 447  
        10.1.3 Linear Viscoelastic Fracture Predictions Based on J-Integrals 449  
     10.2 Short-Term Tensile Strength 451  
        10.2.1 Brittle Failure 451  
        10.2.2 Ductile Failure 455  
        10.2.3 Failure of Highly Filled Systems or Composites 458  
     10.3 Impact Strength 461  
        10.3.1 Impact Test Methods 467  
        10.3.2 Fracture Mechanics Analysis of Impact Failure 471  
     10.4 Creep Rupture 476  
        10.4.1 Creep Rupture Tests 477  
        10.4.2 Fracture Mechanics Analysis of Creep Rupture 480  
     10.5 Fatigue 480  
        10.5.1 Fatigue Test Methods 481  
        10.5.2 Fracture Mechanics Analysis of Fatigue Failure 489  
     10.6 Friction and Wear 491  
     10.7 Stability of Polymer Structures 494  
     10.8 Environmental Effects on Polymer Failure 496  
        10.8.1 Weathering 496  
        10.8.2 Chemical Degradation 501  
        10.8.3 Thermal Degradation of Polymers 503  
     References 507  
  11 Electrical Properties of Polymers 510  
     11.1 Dielectric Behavior 510  
        11.1.1 Dielectric Coefficient 510  
        11.1.2 Mechanisms of Dielectrical Polarization 514  
        11.1.3 Dielectric Dissipation Factor 517  
        11.1.4 Implications of Electrical and Thermal Loss in a Dielectric 520  
     11.2 Electric Conductivity 521  
        11.2.1 Electric Resistance 521  
        11.2.2 Physical Causes of Volume Conductivity 522  
     11.3 Application Problems 525  
        11.3.1 Electric Breakdown 525  
        11.3.2 Electrostatic Charge 529  
        11.3.3 Electrets 530  
        11.3.4 Electromagnetic Interference Shielding (EMI Shielding) 530  
     11.4 Magnetic Properties 531  
        11.4.1 Magnetizability 531  
        11.4.2 Magnetic Resonance 531  
     References 532  
  12 Optical Properties of Polymers 534  
     12.1 Index of Refraction 534  
     12.2 Photoelasticity and Birefringence 537  
     12.3 Transparency, Reflection, Absorption, and Transmittance 541  
     12.4 Gloss 547  
     12.5 Color 548  
     12.6 Infrared Spectroscopy 552  
     12.7 Infrared Pyrometry 553  
     12.8 Heating with Infrared Radiation 555  
     References 557  
  13 Permeability Properties of Polymers 558  
     13.1 Sorption 558  
     13.2 Diffusion and Permeation 560  
     13.3 Measuring S, D, and P 565  
     13.4 Corrosion of Polymers and Cracking [5] 566  
     13.5 Diffusion of Polymer Molecules and Self-diffusion 569  
     References 569  
  14 Acoustic Properties of Polymers 570  
     14.1 Speed of Sound 570  
     14.2 Sound Reflection 572  
     14.3 Sound Absorption 573  
     References 574  
  Appendix 576  
     Appendix I 577  
     Appendix II 585  
     Appendix III 586  
     Appendix IV – Balance Equations 605  
        Continuity Equation 605  
        Energy Equation for a Newtonian Fluid 605  
        Momentum Balance 606  
        Momentum Equation in Terms of t 606  
        Navier-Stokes Equation 606  
  Index 608  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Sexualität / Erotik
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz